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ABSTRACT 

In this thesis, we investigate two critical components of a digital-image 

synthesizer electronic warfare architecture that can be used to infuse false targets into 

high-range resolution profiling radars. The first investigation encompasses the design of 

an in-phase and quadrature (I/Q) converter based on a CORDIC (Coordinate Rotation 

Digital Computer) algorithm. Mathematical modeling is used to examine the accuracy of 

converting a digitized radar signal I/Q sample into a corresponding five-bit binary phase 

angle. Results obtained from MATLAB show that 18 CORDIC iterations are required to 

achieve accuracy at 5.625o. The resulting design was implemented using the Verilog 

hardware description language. The second investigation concerns generating sea clutter 

to impose on the false target. The mean-power return of the sea clutter is calculated using 

the average power of the radar-cross section derived from the Naval Research Laboratory 

sea clutter model. The modulation coefficients for the sea clutter were generated using 

the fluctuating power returns and Doppler spectra generated using a random KA 

distribution. The coefficients for several sea states were generated using MATLAB. 

Results show that the correct sea clutter model can effectively add realism to the false 

target image. 
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I. INTRODUCTION 

A. INVERSE SYNTHETIC APERTURE RADAR 

An inverse synthetic aperture radar (ISAR) is an imaging sensor that creates a 

high-resolution, two-dimensional image of a moving object. An ISAR transmits 

electromagnetic (EM) radio frequency (RF) waveforms in the direction of the moving 

object and receives the waveforms that are reflected back. When there is relative motion 

between the ISAR and the moving object, also referred to as a target, the frequency of the 

received RF waveform is different from that of the transmitted RF waveform. This 

change in frequency, also known as a Doppler shift, is a pulse-to-pulse phase rotation and 

varies according to the range rate of the target. By processing the Doppler returns, we can 

use an ISAR to create images in the range and cross-range domain [1]. An image of the 

U.S.S. Crockett and an ISAR image of the ship are shown in Figure 1. By observing the 

two images, we can identify the masts and superstructure of the ship within the 

ISAR image.  

 

Figure 1. a) Photo of the U.S.S. Crockett, b) ISAR Image of the U.S.S. Crockett. 

Source: [1]. 

ISAR technology is employed in civilian applications, such as search and rescue 

operations and space research. In the military, ISAR such as the AN/APS-137B(V) radar 

is used to conduct maritime surveillance operations to identify, recognize, and classify 

surface and airborne targets. With the ISAR being able to provide high-quality data such 

as range, bearing, and position, a vessel patrolling in disputed waters can easily be 
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detected and identified by an adversary. As ISAR technology matures and ownership 

becomes more accessible to all, the need for measures to counter ISAR in the electronic 

warfare (EW) spectrum will increase.  

B. COUNTERING THE ISAR 

The main techniques of electronic jamming that can be used to disrupt detection 

by an ISAR are presented in [2]. The first technique uses a noise signal to mask the 

backscatter return of the target. Although noise jamming can be achieved using low 

power, its effectiveness is reduced if the jammer has to spread the power over multiple 

frequencies at the same time. Increasing the power or using additional jammers can 

address this constraint on power, but the stronger emission increases the target RF 

signature and can also disrupt its own communication system. The second technique is 

deceptive jamming where the target replicates a backscatter return waveform that causes 

the adversary radar to detect a different target. The intent is to mislead the adversary into 

mistaking the target for a non-hostile vessel in hopes to disrupt an offensive action 

against it. The advantage of this technique is a lower emission signature that promises 

higher EM stealth. The disadvantage is the complexity associated with this technique as 

the jammer must be able to modulate the pulses of the ISAR waveform with the 

appropriate time delay, phase rotation, Doppler shift, and amplitude such that the false 

target looks convincing to the adversary [3]. 

C. DIGITAL IMAGING SYNTHESIZER (DIS) 

The DIS was invented by a team of staff and students from the Naval 

Postgraduate School (NPS) in 2001 to generate image decoys against an ISAR [4], [5], 

[6]. The DIS is capable of modulating the phase and amplitude of the ISAR waveforms to 

resemble the desired motion profile and the radar-cross section (RCS) characteristics of 

the intended false target that appear on the ISAR image. The ISAR waveforms are 

provided to the DIS from a high-speed digital RF memory (DRFM) [7], which captures 

and stores the intercepted waveforms. A phase converter is used to extract the phase 

samples from the digital signals. The phase samples are provided to a finite impulse 

response arrangement of pipelined range bin Doppler processors with finite resolution. A 
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prototype version of the DIS was implemented on an Application Specific Integrated 

Circuit (ASIC), and functional testing was completed in 2007 [8]. In 2015, the NPS 

Center for Joint Services Electronic Warfare began work to improve the DIS using Field 

Programmable Gate Arrays.  

As the DIS can provide electronic protection (EP) for surface vessels, it is 

regarded as a threat to ISAR. This view has inspired several ideas for electronic attack 

against the DIS, and they are summarized in [9]. One of the proposed electronic attack 

techniques [10] exploits the presence of banding gaps that the false target creates on the 

ISAR image, which become more significant as the Doppler resolution of the ISAR 

increases. In addition, the false target lacks the proper backscatter returns such as the 

ones from the surface of the sea (sea clutter), which must also appear on the ISAR image. 

In summary, the characteristics of the false target created by the DIS are limited due to 

the finite resolution of the range-bin Doppler processors and the lack of a proper sea 

clutter profile. 

D. PRINCIPAL CONTRIBUTIONS 

The principal contributions of this research are centered around the development 

of an efficient DIS phase converter and the creation of a realistic sea clutter profile. The 

major investigations completed are given below. 

1. Phase Converter for the DIS Using the CORDIC Algorithm 

A phase converter was designed to generate phase samples for the DIS using the 

Coordinate Rotation Digital Computer (CORDIC) algorithm. The phase converter 

receives samples of the ISAR waveforms from a DRFM in complex form comprised of 

an in-phase (I) component and a quadrature (Q) component. The phase converter 

calculates the phase of this complex signal as a five-bit binary number. A model of the 

phase converter was built using MATLAB to study the key parameters, such as the 

number of iterations of the CORDIC process and the number of fraction bits required for 

accurate results. The study concluded that the phase converter requires 18 iterations of 

the CORDIC algorithm to compute accurate phase samples quantized at five bits. After 
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the parameters were calculated, the phase converter is described using the Verilog 

hardware description language and the latter tested to work using the ModelSim software. 

2. Sea Clutter Profile for the DIS 

An existing sea clutter simulation model was modified to generate the proper sea 

clutter in various sea states and wind directions for a high-resolution airborne radar. The 

model makes use of an empirical model developed by the Naval Research Laboratory 

(NRL) to calculate the normalized RCS of the sea clutter. Using the fluctuating power 

and Doppler generated by two random statistical models, we created a power density 

spectrum of the sea clutter. A portion of the power spectral density was then extracted to 

create the sea clutter to collocate beside the false target on the ISAR image.  

E. THESIS OUTLINE 

In Chapter II, the reader can find a discussion of the fundamental ISAR concepts 

and signal processing. The purpose of this chapter is to provide a background for 

understanding ISAR reception and image generation. This background also helps the 

reader to appreciate Chapter III, which features the DIS architecture and its process. The 

design of the phase convertor that uses the CORDIC algorithm is discussed in Chapter 

IV, while the modeling and simulation of the sea clutter is discussed in Chapter V. In this 

chapter how the sea clutter at various sea states appears on the range-Doppler image is 

discussed. The thesis is concluded in Chapter VI, in which recommendations for future 

research on the DIS are also mentioned.  
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II. SYNTHETIC IMAGING SENSORS 

An imaging radar such a synthetic aperture radar (SAR) or ISAR is able to 

generate images in high resolution. The resolution of a radar is its ability to resolve 

multiple targets located close to one another, and it is determined by parameters of the 

radar, such as frequency, coherent processing interval, and the dimensions of the antenna. 

In the case of the ISAR, the rate of rotational motion of the target about its axis can affect 

the resolution in the cross-range dimension. The purpose of this chapter is to provide 

readers a summary of how an imaging radar functions and how image processing is 

carried out in an ISAR so as to allow the reader to appreciate the DIS process, which is 

featured in the subsequent chapter. 

A. RANGE AND CROSS-RANGE RESOLUTION 

The range and cross-range resolutions describe the ability of a radar to resolve 

targets that are very close to one another. The range and cross-range resolution distances 

are the minimum separations between two targets in order to be differentiated by the 

radar. In general, it is harder to achieve high cross-range resolution than it is to achieve 

high-range resolution. For a non-imaging radar, the range resolution distance is defined 

as 

 
2

r

c
d


   (2.1) 

where rd  is the range resolution distance, c  is the speed of light, and   is the 

transmission pulse width. A shorter pulse width reduces the range resolution distance and 

increases the resolution. As transmitting a short pulse width to achieve high-range 

resolution requires a high level of power, which presents a separate set of problems, 

pulse-compression techniques such as pulse coding or frequency modulation are used to 

provide the sufficiently large bandwidth that corresponds to a short pulse while keeping 

the power at a manageable level [4].  

The cross-range resolution distance is defined as 
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cr

R
d

D


  (2.2) 

where crd  is the cross-range resolution distance, R  is the target range,   is the 

wavelength, and D  is the physical dimension of the antenna. From (2.2), a higher cross-

range resolution or a smaller cross-range resolution distance can be achieved by 

decreasing the RF wavelength or increasing the dimension of the antenna. Real-life 

constraints such as space limitations and the relatively higher atmospheric attenuation of 

higher-frequency RF waves, however, prevent radar designers from doing so.  

B. SAR CONCEPTS 

1. Range and Cross-Range Resolution of SAR 

SAR, despite not having a large antenna, is able to achieve high cross-range 

resolution because it is able to emulate a large antenna during operation. This is achieved 

by making use of the forward motion of the aircraft that has the SAR as its payload [11]. 

“Each time a pulse is transmitted, the radar occupies a position a little farther along on 

the flight path. By pointing a reasonably small antenna out to one side and summing the 

returns from successive pulses, it is possible to synthesize a very long side looking linear 

array” [12]. The cross-range resolution distance for a SAR is defined as 

 
2

crSAR

R
d

L


   (2.3) 

where crSARd  is the SAR cross-range distance and L  is the flight path length, which is 

also the length of the synthetic linear array. As [11] has shown,  the summing of enough 

returns such that 

 L R
D


   (2.4) 

and substituting of (2.4) into (2.3) results in the maximum cross-range resolution as 

 
2

2




 

 
 
 

crSAR

R D
d

R
D

.  (2.5) 
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From (2.5), we observe that reducing the dimension of the antenna also reduces the cross-

range resolution distance. Yet, there is also a limit to how this should be handled since 

reducing the size of the antenna also reduces its gain factor, which affects detection 

range. 

2. Doppler Processing 

When the aircraft carrying the SAR is in motion, there will be Doppler effect 

present in the backscatter return, causing a difference in frequency of the transmitted 

waveforms and the received waveforms. Doppler is determined by the radial velocity and 

is approximated as 

 r
d

v
f




   (2.6) 

where df  is the Doppler shift and rv  is the radial component of the aircraft velocity 

along the range dimension. For two targets spaced apart by a distance, their Doppler 

returns are different at a given time instant. The SAR translates the difference in Doppler 

frequencies into cross-range separation [11]. A Doppler history of the returns from 

several evenly spaced points on the ground offset from the radar flight path taken is 

shown in Figure 2. At any given time, the Doppler from each point has a slight 

difference, which corresponds to their azimuth separation. A motion compensation 

technique is used to correct phase error introduced when the aircraft is not flying at a 

constant velocity. 

 

Figure 2. Doppler Histories of Evenly Spaced Points on the Ground. 

Source: [11]. 
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3. Spotlight Mode 

SAR operates in several modes. These modes are strip-map, squint, and spotlight. 

Each mode produces an image with different levels of cross-range resolution and are 

employed for different missions. Spotlight mode offers greater cross-range resolution 

than the other two modes and is usually employed when there is a region of high interest 

that requires continuous mapping. When in this mode, the SAR antenna is steered to 

focus on the region as the aircraft moves around it. Stimson [11] mentioned three 

improvements using this mode. First, L is no longer bounded by the beamwidth of the 

physical antenna, which is approximately / D . Second, a larger antenna can be used 

without having to reduce L, thereby bringing about a higher main lobe gain, which 

improves the signal-to-noise ratio. Finally, viewing the target from different aspect angles 

allows the SAR to capture returns from other scatterers of the target, which is not 

achievable from just one aspect angle. The spotlight mode is highlighted in the thesis 

because it shares the same principle as the ISAR. 

C. ISAR CONCEPTS 

SAR is suitable for imaging objects when they are stationary. Used on objects that 

have motions about their own axes, SAR produces images that become blurred. ISAR, 

which is stationary, makes use of the Doppler shift generated by the object’s velocity in 

the line-of-sight (LOS) direction to the ISAR to resolve the object in the cross-range 

dimension. A pulse compression technique is used to generate a pulse that has a short 

width   and a wide modulation bandwidth   with 1/   . A commonly used waveform 

is the linear frequency modulated (LFM) waveform, which is also known as a chirp 

waveform. An LFM ISAR pulse can be expressed as 

 
 22 2

( )
  

  
 

cj f t Tt
r t rect e

T
  (2.7) 

where T  is the uncompressed pulse width in s,   is the modulation bandwidth of the 

LFM waveform in Hz, and cf  is the transmitted carrier frequency in Hz. The pulse 
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envelope of a rectangular function  /rect t T , the instantaneous modulating frequency, 

and the resulting LFM pulses are depicted in Figure 3. 

 

Figure 3. LFM Chirp Pulse. Source: [4]. 

1. Range Resolution 

The range resolution for an ISAR using an LFM waveform is 

 
2

rISAR

c
d 


 . (2.8) 

With pulse compression, the improvement in range resolution is a factor of /T  . 

2. Cross-Range Resolution 

The cross-range resolution of an ISAR is illustrated in Figure 4. A ship is rolling 

on its axis perpendicular to the LOS from the ISAR at an angular rate of ω. Point M, 
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which is at the top of the ship mast, is at a distance h away from the axis, giving a 

tangential velocity of ωh. The instantaneous Doppler frequency shift at that point is 

 
2 2v h

f


 
   . (2.9) 

Rearranging gives 

 
2

h f



  . (2.10) 

 

Figure 4. Resolving Cross-Range Resolution Based on Target Rotation 

By replacing h with the incremental cross-range distance, which is the cross-range 

resolution distance of the ISAR crISARd , we re-express (2.9) as 

 
2

crISARd f



    (2.11) 

where f  is the Doppler resolution of the ISAR. This can also be expressed as 

 
1

I

f
T

    (2.12) 

where IT  is the coherent integration time. Substituting (2.9) into (2.8), we can express 

crISARd  as 
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1

2 2
crISAR

I

d
T

 

 

  
   
  

  (2.13) 

where T   is the angular displacement. From (2.11) and (2.12), we see that crISARd  

can be further reduced by increasing the angular velocity, or integration time. 

3. ISAR Range-Doppler Image 

The ISAR displays a range-Doppler image, which is a consolidation of all the 

backscatter returns from the target as it rotates on its own axis in a given time period. The 

range reveals the distance from the ISAR to the target along the ISAR LOS. The Doppler 

of the target on a plane perpendicular to the ISAR LOS tells the cross-range information. 

With the ship in Figure 4 as an example, the position coordinates of the mast in the range-

Doppler image comprise its position in the range dimension and its Doppler value in the 

Doppler dimension. When the ship is rolling in the direction of the ISAR LOS, the 

Doppler shifts created by all the reflective surfaces of the ship are positive. Being the 

highest located structure on the ship, the mast has the greatest radial velocity and creates 

the largest positive Doppler shift. When rolling away from the ISAR, the ship appears 

upside down and the mast has the most negative Doppler value. Such proportionality 

allows the range-Doppler image to be used interchangeably as a two-dimensional image. 

D. ISAR IMAGE PROCESSING 

Having introduced the ISAR range-Doppler image and the information that it 

represents, in this section we discuss the generation of such an image. 

1. Range Imaging Model 

Consider the scatterers model shown in Figure 5. The range-profile function 

represents the reflectivity of the target at each resolvable range. For a one-dimensional 

target with Nr scatterers, the range-profile function can be represented as [4] 

 ( ) ( )
rN

r m m

m

C x x x     (2.14) 
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where m  is the RCS of the mth scatterer located at range xm. Let a received ISAR 

baseband signal from the target scatterer be 

 
 2

( )
  

  
 

j t Tt
s t rect e

T
. (2.15) 

The received signal can be represented as 

 
1

( ) ( 2 )


 
rN

s m s m

m

I mT s mT x c   (2.16) 

where Ts is the analog-to-digital converter (ADC) sampling period and 2 /mx c  is the 

round-trip time delay. The received signal from (2.15) can also be expressed as the 

convolution between the range profile function and the transmitted signal 

 ( ) ( ) ( ) ( ) ( )
2

   s
s r s r s

cmT
I mT C x s mT C s mT  (2.17) 

where “ ” implies convolution. Rearranging the terms in (2.17) and applying Fourier 

transforms, we get the range profile function, which can be expressed as 

 
 
 

 
     

       
     

1 1
( ) ( )

2 ( )( )

ss
r

s

I mTcmT I k
C

S ks mT
  (2.18) 

where k is the frequency index,  and 1  represent the Fourier transform and inverse 

Fourier transform, respectively.  

  

Figure 5. Geometry for One-Dimensional Range Imaging 
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2. Image Compression 

The image compression process is shown in Figure 6. Here n is the pulse index 

and m is the sample index of each individual, and I(m,n) is the mth sample of the nth 

pulses received by the ISAR, S(m,n) is the mth sample of the nth pulse transmitted, and 

Cr(m,n) is the range profile of the target based on the mth sample of the nth pulse.  

  

Figure 6. ISAR Compression Process. Source [1]. 

The inverse Fourier transform in (2.18) assumes S(k) is nonzero at all frequencies. 

In practice, range imaging is based on matched filter theory, and the range profile 

function is obtained from the cross-correlation of the received signal with the transmitted 

signal [4]. The new expression for the range profile function is, therefore, 

 ( , ) ( , ) ( , )rC m n I m n S m n   (2.19) 

where “ ” implies cross correlation.  Putting the cross correlation of I(m,n) and S(m,n) 

through an inverse Fourier transform results in the product of the Fourier transform of 

I(m,n) and the complex conjugate of the Fourier transform of S(m,n) 

    ( , ) ( , ) ( , ) ( , ) ( , )
r
C m n I m n S m n I k n S k n   ,  (2.20) 

where “  ” implies complex conjugate and  

   
 

*
*( , ) ( , )S k n S m n   (2.21) 
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and 

  ( , ) ( , )I k n I m n .  (2.22) 

The range profile function can then be obtained by taking the inverse Fourier transform 

of (2.18), which is 

  1 *( , ) ( , ) ( , )
r
C m n I k n S k n .  (2.23) 

Equation (2.23) can be displayed as a matrix in which each row is the range profile 

function of a distinct pulse, and each column holds the component of the range profile 

grouped into the same range bin. This matrix can be expressed as 

 

1

2

1

( , )

( , )

( , )

( , )

( , )

p

p

rN p

rN p

r

r

r

C m n for pulse N

C m n for pulse N

C m n

C m n for pulse

C m n for pulse



    
 

    
 

  
   
 

   
 

.  (2.24) 

Every range profile function represents the reflectivity of the target in the time 

domain. Performing a Fourier transform on the range profile matrix and taking the 

absolute values yields the Doppler components at each range bin for all the Np pulses. 

Aligning the range Doppler for all the pulses then yields the final ISAR image. The ISAR 

image can be expressed as [1] 

 







  
1

0

1
( , ) { ( , )} ( , )

p

s

N
jwT kn

r r r
np

C m k FFT C m n C m n e
N

.  (2.25) 

E. CHAPTER SUMMARY 

The concept of SAR and ISAR were explained in this chapter. The processes of 

range modeling and range compression leading to the generation of the range-Doppler 

profile were also discussed. An overview of the DIS process is presented in the next 

chapter. 
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III. THE DIS PROCESS 

The processing of a backscatter signal to form a range-Doppler image within an 

ISAR was discussed in the previous chapter. In this chapter, the discussion focuses on the 

DIS and its capability to synthesize a false target in the ISAR image. That is, the DIS 

modulates the ISAR return waveforms to include imitations of radar return signals such 

that a false target appears in the ISAR compression. 

A. OVERVIEW 

At the system level, the DIS is integrated into a DRFM [9]. The block diagram of 

a DRFM is shown in Figure 7. A DRFM is able to intercept and store RF waveforms as 

well as retransmit them subsequently. Upon capturing an ISAR waveform, the DRFM 

uses a local oscillator to down convert the signal to an intermediate frequency. The 

intermediate frequency signals are separated into in-phase and quadrature components 

and are digitized by the ADCs into digital samples that are stored in a high-speed 

memory. An I/Q phase converter extracts phase information from the digitized 

waveforms to generate phase samples for the DIS to process. After modulation by the 

DIS is complete, the DRFM converts the processed signal back into an analog form. 

Finally, the DRFM transmits the analog signal back to the ISAR. 

 

Figure 7. Simplified Block Diagram of the DRFM Integrated with the I/Q Phase 

Converter and DIS. Adapted from [9].  
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The range resolution distance of a typical modern ISAR is approximately 1 m. 

The range resolution of the DIS has to be larger than that of the ISAR in order to have the 

generated false target look genuine [1]. A target profile of a large structure, such as a 

ship, spans many range bins. A simplified example used as a test pattern is shown in 

Figure 8, where the scatterers of a ship target are distributed over 32 range bins. The DIS 

consists of multiple range bin modulators in parallel with each range bin modulator 

responsible for modifying one range bin of the target. Unlike the ISAR where the range 

resolution distance is determined by the bandwidth of the compressed LFM pulse, the 

range resolution of the DIS depends on the DRFM sampling period or delay between 

each range bin modulator. Having more range bin modulators gives the DIS the options 

to synthesize extended targets in range-Doppler space.  

The test target in Figure 8 was used to verify that the complex range bin 

processors were functioning properly. In addition, the test pattern was used to confirm the 

compression signal processing of the ISAR. The test pattern can be compared to the 

output range-Doppler configuration to identify problems with the image generation 

architecture. Most importantly, the test pattern process leads to engineering concepts that 

must be addressed in the deployed version of the DRFM where realistic targets are 

synthesized. Engineering details such as clutter modeling and addition of the clutter 

coefficients to the target coefficients can be studied. The development of realistic target 

models can also be examined. 

B. PHASE AND GAIN COEFFICIENTS 

The modulated backscatter returns must have the appropriate amplitudes and 

phases in order to generate a false target that looks convincing to the ISAR operator. 

These returns are supposed to resemble the reflected RF waveforms from each scatterer 

on the target, such as the ones shown in Figure 8. The amplitude and phase of the return 

signal are determined by the RCS and Doppler frequency of each scatterer, respectively. 

The false target modulation is represented by a gain coefficient and a phase coefficient. 

To generate a specific test target profile, the DIS needs to be programmed with a set of 

gain coefficients and phase coefficients.  
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Figure 8. Scatterer Distribution of a Ship Test Target. Source: [5]. 

1. Generating Realistic Phase and Gain Coefficients 

The process for generating phase and gain coefficients to generate a realistic 

target image is shown in Figure 9. Here, an ISAR is shown illuminating complex 

scatterers consisting of a ship rocking back and forth in the sea. This complex scattering 

scene cannot be created synthetically; it can only be generated using the scattered EM 

field from the ISAR sensor as shown. The scattered waveform is collected by the 

reference receiver that digitized the scattered field using a high sampling rate. The I and 

Q components are digitized and used to calculate the gain and phase increment 

coefficients. It is difficult and expensive to collect the scattered waveforms 

experimentally.  Consequently, detailed models of the ISAR, ship test target, and sea 

clutter can be used to collect the scattered returns instead.  For the purpose of illustrating 

the bit-level simulation of the DIS, the generation of the coefficients was based on the 

ship target as a test pattern for the rest of this chapter. 
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Figure 9. Generating Realistic Phase and Gain Coefficients 

2. Generating a Target Return for a Test Target 

The phase coefficients were derived using the range-Doppler profile of the test 

target. An example of a range-Doppler profile of a ship target as a test pattern is shown in 

Figure 10. Here, r is the index of the range cell in the horizontal axis, and d is the index 

of the Doppler cell in the vertical axis [5]. The number that appears in a cell with 

coordinate (r,d) indicates the Doppler of the scatterer in that location. The information 

about the RCS of the scatterer is not displayed in this range-Doppler profile. 

 

Figure 10. Range-Doppler Profile for a Test Target Template. Adapted from [4]. 
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The ISAR integrates multiple pulses to form an image. Since the target velocity 

component in the radar LOS and the target position vary with each pulse, the amplitude 

and phase also vary for different pulses. As such, the target return in the complex form 

can be represented as a function of the transmitted pulse index and coordinate location on 

the range-Doppler profile map  

 
2 ( , )( , , ) ( , ) j f r d nPRIT r d n A r d e  .  (3.1) 

The target return can be consolidated at each range bin for each pulse. This is achieved 

by adding up the returns from all the scatterers in the Doppler cells with the same range 

cell index and can be expressed as [5] 

 
1

( , ) ( , , )
dN

d

T r n T r d n


  ,  (3.2) 

where Nd is the total number of Doppler cells. Equation (3.2) was used to generate the 

phase coefficient and gain coefficients. 

3. Generating the Phase Coefficients for a Test Target 

The phase angles of the target returns at each range bin r for each pulse n were 

calculated to derive the phase coefficients. The phase angle of a target return was 

computed using its real and imaginary components and is expressed as [5]  

 
 

 

( , )
( , )

( , )
T

imag T r n
r n

real T r n


 
    

.  (3.3) 

The use of the phase angle is explained in [1]. “To create the proper Doppler 

frequency, the image synthesizer rotates the DFRM phase samples ( , )m n  on a pulse-to-

pulse basis. Therefore, instead of the extracted phase value being applied directly, a phase 

increment is required” [1]. The phase increment for range bin r and pulse n can be 

expressed as 

 ( , ) ( , 1) ( , 1) ( , )inc inc T Tr n r n r n r n         .  (3.4) 

The phase coefficient is generated when the phase increment is quantized at kp-

bits, which is 

 

' ( , )2
( , )

2

pk

inc
inc

r n
r n






 
  
 

  (3.5) 
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where     is the floor integer rounding function. 

4. Generating the Gain Coefficients for a Test Target 

From [4], the amplitude modulation involves taking the product of the intercepted 

signal and “a gain value equal to the magnitude of the sum of the complex scatterers at 

the same range bin/pulse combination.” To obtain the gain values, the magnitude in  (3.2) 

is normalized so that it varies between 0 and 1 

 
( , )

( , )
max ( , )

N

T r n
T r n

T r n


 


.  (3.6) 

The gain values are applied by performing bit-shifting on the I and Q components of

( , )T r n . The extent of the shifting is determined by a control code kg, which is assigned 

based on the ranges of magnitude for ( , )T r n  [5]. As an illustration, the gain modulation 

quantization scheme that uses four bits for kg is shown in Table 1. The gain coefficient 

( , )g r n  represents the value of the shift in the binary signal with the effective gain, as 

shown in Table 1.  

Table 1. Gain Modulation Quantization Scheme. Source: [4]. 

Normalized Magnitude Gain Coefficient ( , )g r n  Effective Gain ( , )2g r n  

0.8–1.0 10 1024 

0.4–0.8 9 512 

0.2–0.4 8 256 

0.1–0.2 7 126 

0.05–0.1 6 64 

0.025–0.05 5 32 

0.0125–0.025 4 16 

0.00625–0.0125 3 8 

0.0032–0.00625 2 4 

0.0016–0.00625 1 2 

0–0.0016 0 1 
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C. PHASE SAMPLES OF INTERCEPTED ISAR SIGNAL 

The DRFM down converts the ISAR received LFM waveforms. Recall the 

complex envelope of the signal after down conversion is 

 
2( / )( ) j t Tt

s t rect e
T

  
  

 
.  (3.7) 

Samples of the radar signal are taken by the DRFM at regular intervals. The DRFM 

sample times are defined as 

 
s

m
t nPRI

f
    (3.8) 

where fs is the ADC sampling frequency and PRI is the ISAR pulse repetition interval in s 

[5]. After substituting the time t in  (3.7) with the expression of t in (3.8), we express the 

complex envelope amplitude sample for the I and Q components as 

  ( , ) ( , )realS m n real S m n   (3.9) 

and 

  ( , ) ( , )imagS m n imag S m n .  (3.10) 

The I/Q phase converter calculates the phase angles of the I and Q sample signal and 

generates them as kp-bits phase samples. The phase angles can be expressed as 

 
( , )

( , )
( , )

imag

o

real

S m n
m n

S m n


 
  

 
,  (3.11) 

and the phase samples can be expressed as 

 
( , )2

( , )
2






 
  
 

pk

o m n
m n .  (3.12) 

The I/Q phase converter is implemented using the CORDIC algorithm and is discussed in 

greater detail in Chapter IV. 

D. DIS SIGNAL PROCESSING 

In this section, we describe the signal processing that takes place within the DIS. 

The block diagram of the DIS is shown in Figure 11. The most significant components of 

the DIS are the range bin modulators. Each range bin modulator consists of a phase 
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adder, a look-up table (LUT), a gain block, and a summation adder. At the adder of a 

specific range bin modulator, a phase sample from the I/Q phase converter is added with 

a phase coefficient that is designated for that specific range bin modulator and for that 

specific pulse. The phase increment in a range bin changes with the pulse-repetition 

interval (PRI). The modulated kp-bits phase output can be expressed as 

 

 ˆ( , , ) ( , ) ( , )incr m n m n r n    .  (3.13) 

 

Figure 11. DIS Block Diagram. Adapted from [1]. 

The modulated phase output is used to construct a complex signal with a unit 

amplitude that can be expressed as  

 ˆ ˆ( , , ) cos( ( , , )) sin( ( , , ))L r m n r m n j r m n   .  (3.14) 

The cosine and sine of the modulated phase are computed using an LUT that contains the 

results of the cosine and sine operation on all 2 pk
possible phase outputs. With that, the 

normalized I and Q amplitude components are established and applied to the gain block 

via their own channel [5]. 
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The amplitude modulation takes place at the gain block where the I and Q 

components are multiplied with the gain coefficients. The outcome of this amplitude 

modulation is a complex signal that can be expressed as 

 
ˆ( ( , ) ( , ))( , ) ( , )( , , ) 2 ( , , ) 2 incj m n r ng r n g r nS r m n L r m n e

 
  .  (3.15) 

 

The final adder is the last stage in each range bin modulator. The complex signal 

in (3.15) is sent to the final adder and added with the output of its adjacent final adder 

from another range bin modulator. For example, the output of the final adder from range 

bin modulator #1 is the summation of the outcome of the amplitude modulation in range 

bin modulator #1 and the output of the final adder from range bin modulator #2. The 

output of the final adder from range bin modulator #2 is the summation of the amplitude 

modulation created in range bin modulator #2 and the output of the final adder from 

range bin modulator #3, and so on. The complex output pulse from the DIS is taken from 

the final adder in range bin modulator #1. A delay of one clock cycle is introduced by 

each adder. In other words, “each output pulse is the superposition of Nr copies of the 

pulse, each delayed with respect to another by the adder delay, scaled differently by the 

gains 2g(r,n) and phase rotated by ( , )inc r n ” [1]. The final DIS output expression is 

given by 

 
1 1

( ( , ) ( , ))( , )

0 0

( , ) ( , , ) 2
r r

inc

N N
j m r n r ng r n

r r

I m n S r m n e
 

 
 

 

   .  (3.16) 

The output from the DIS is returned to the DRFM, which converts the output signal into 

analog form. After that, the analog signal modulates the carrier frequency of the ISAR 

prior to transmission back to the ISAR. Upon reception of the modulated signal, the 

ISAR processes the signal using the imaging process described previously in Chapter II. 

E. RANGE-DOPPLER IMAGE FOR A TEST TARGET 

In this section, we presents the range-Doppler image for a false target that is 

generated by the DIS using the test target shown in Figure 8. The DIS was previously 

been implemented in MATLAB. The bit-level simulation algorithm of the software 

model is covered in detail in [4]. The MATLAB comprises three main files that must be 
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executed in the correct order. The first file, extract_v5.m, generates the modulation 

coefficient for a test target.  The second file, mathost_v5.m, simulates the phase samples 

provided by the DRFM and the reference signal required by the ISAR receiver.  The last 

file, simhwchk_v5, simulates the DIS signal processing, generates the modulated ISAR 

waveforms, and simulates the ISAR compression process to produce a range-Doppler 

image of the test target.  The key parameters used in [5] are consolidated in Table 2. 

Several test target profiles with different target extent are also created. The choice 

of the test target profile decides the number of range bin modulators involved to perform 

the modulation. The scatterer distribution for a test target spanning 32 range bins as a test 

pattern is displayed in Figure 8. The simulated range-Doppler image of a test target 

spanning 32 range bins is displayed in Figure 12. By comparing Figure 8 and Figure 12, 

we can recognize the superstructure of the ship such as the two masts at both ends of the 

ship as well as the wheelhouse located in the center of the ship. 

Table 2. Key Parameters Used in the Simulation of the DIS 

1. ISAR LFM Waveforms 

PRF 200 Hz 

Number of pulses for integration 128 

Bandwidth 500 MHz 

2. DRFM 

Sampling frequency 1 GHz 

3. DIS 

Number of bit for phase samples 5 bits 

Number of bit for phase quantization, kp 5 bits 

Number of bit for gain control code, kg 4 bits 
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F. IDENTIFYING THE DIS TEST TARGET  

Compared with the ISAR image of the U.S.S. Crockett in Figure 1, there appear 

to be banding gaps consistently displayed in the Doppler frequency domain of Figure 12. 

This can be explained by the limitation of the ship target profile. The surface of a real 

ship is continuous, whereas the ship target profile is constructed using a limited number 

of discrete scatterers. The latter results in the Doppler component of the target return to 

be discrete, which causes the gaps to appear. Using the coefficients calculated with the 

actual scattered electromagnetic field can eliminate the presence of these banding gaps 

due to the complex interactions of the near-field reflections. 

 

Figure 12. Simulated Range-Doppler Image of 32-Range Bin Test Target  

The ISAR image of the U.S.S. Crockett in Figure 1 also contains blurred regions, 

whereas the false target created by the DIS using the test pattern appears clear and 

distinct. The real image is blurred because the movement of a real ship is complex and 

cannot be adequately compensated by the ISAR image realignment and phase 

compensation. The DIS image appears sharp because the false target signal created using 

digitally quantized phase and gain coefficient can be compensated fully by the ISAR. 
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The requirement on the fidelity of the range-Doppler image varies according to 

mission requirements and platform capability. The fidelity can be enhanced by increasing 

the number of pulses integrated into the ISAR compression process as shown in Figure 6. 

When that happens, the lack of details on the test target is even more apparent and is 

demonstrated in Figure 13. The compression results provide significant insight into the 

coefficient to the DIS image formation. Although the scattered EM field from an actual 

ship in the sea provides a realistic target signature from which target coefficients can be 

extracted, no insight into the overflow characteristics and gain quantization effects in the 

image formation process and the influence of the coefficients on that process can be 

determined.  

 

Figure 13. Gaps Developing on False Target as Number of Integrated Pulses 

Increases 
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G. CHAPTER SUMMARY 

In Chapter III, an overview of the DIS was provided. Also described was the 

generation of the modulation coefficients using the target return constructed based on a 

test target profile. The internal operation of the DIS was also featured in the chapter. A 

false target image was presented at the end of the chapter, and some of the existing 

shortcomings of the image were highlighted as well. In the next chapter, the design of the 

I/Q phase processor that uses the CORDIC algorithm is featured.  
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IV. THE CORDIC PROCESSOR 

A. OVERVIEW 

The I/Q phase converter is a critical component of the DIS electronic warfare 

architecture as it is responsible for providing the phase samples to the DIS for gain and 

phase modulation. The origins of the phase samples are the transmitted RF waveforms 

intercepted and stored in the DRFM. The I/Q phase converter processes the I and Q 

components of these digitized waveforms and creates phase samples for the DIS.  

1. Arctangent Function 

The I and Q components of an ISAR waveform sample can be combined to form 

a complex number z = x + jy, with the I component being the real part and the Q 

component being the imaginary part. The phase of z is defined as the angle from the 

positive real x-axis in the counter clockwise direction. A way to measure this angle is to 

perform the division of y by x and apply the result to the arctangent function. An example 

of angle measurement for a complex number is shown in Figure 14. 

 

Figure 14. Angular Measurement for a Complex Number 
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The phase angle of the complex number z1 is  , which can be expressed as 

 
1

arctan

tan .

y

x

y

x





 
  

 

 
  

 

  (4.1) 

The phase angle of the complex number z2 is  ,which can be expressed as 

 arctan
y

x


 
  

 
.  (4.2) 

As   is a reflex angle (more than 180o), it can also be expressed as 

 
12 tan 2

y

x
     
    

 
.  (4.3) 

2. Phase Quantization 

The phase samples and the phase coefficients are quantized at kp-bits. The current 

version of the DIS is based on a five-bit quantization scheme where 32 distinct five-bit 

binary words are used to represent angles from 0o to 360o. The angle resolution is, 

therefore, 11.25o per bit. The representation of the phase angles using five-bit phase 

resolution is displayed in Table 3. 

B. COORDINATE ROTATION DIGITAL COMPUTER (CORDIC) 

The CORDIC algorithm is chosen as the method to perform the complex-to-phase 

conversion. The algorithm uses vector rotations to solve trigonometric functions. There 

are two main reasons for choosing CORDIC. First, it is a hardware efficient algorithm 

that implements vector rotations using only shift and add operations. Second, it allows a 

pipelined architecture, which optimizes the throughput.  
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Table 3. Representation of Phase Angles Using Five-Bit Resolution 

Binary 

Representation 

Values of 

Binary 

Representation 

Phase 

Angle 

Binary 

Representation 

Values of 

Binary 

Representation 

Phase 

Angle 

00000 0 0 10000 16 180 

00001 1 11.25 10001 17 191.25 

00010 2 22.5 10010 18 202.5 

00011 3 33.75 10011 19 213.75 

00100 4 45 10100 20 225 

00101 5 56.25 10101 21 236.25 

00110 6 67.5 10110 22 247.5 

00111 7 78.75 10111 23 258.75 

01000 8 90 11000 24 270 

01001 9 101.25 11001 25 281.25 

01010 10 112.5 11010 26 292.5 

01011 11 123.75 11011 27 303.75 

01100 12 135 11100 28 315 

01101 13 146.25 11101 29 326.25 

01110 14 157.5 11110 30 337.5 

01111 15 168.75 11111 31 348.75 

 

1. CORDIC Theory 

The CORDIC theory is covered in this section. In Figure 15 a vector with 

magnitude Z has a phase angle of  . It is subsequently rotated by an angle   in the 

counter clockwise direction. At its first position, the components of the vector can be 

expressed as 

 cosox Z    (4.4) 

and 

 sinoy Z  .  (4.5) 
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Figure 15. A Vector Being Rotated Counter-Clockwise by Angle   

After the rotation, the components of the resulting vector can be expressed as 
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  (4.6) 

and 

 

 
1 sin( )

cos sin sin cos

cos sin sin cos
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  (4.7) 

By conforming tan  to take on values such as 2 i where i is the rotation index, the 

multiplication of 2 i is equivalent to a shift operation that can be easily implemented. 

The cos  term can be expressed 

 

  1

2

cos cos tan 2

1
.

1 2

i

i

  








  (4.8) 
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Being an even function, (4.8) can be treated as a scale constant regardless of the direction 

of rotation. The general expression for the x and y components of the resulting vector 

after every subsequent rotation are xi and yi, [12] and can be expressed as 

 1
2

1
( 2 )

1 2

i

i i i i
i

x x y d 




 


  (4.9) 

and 

 1
2

1
( 2 )

1 2

i

i i i i
i

y y x d 




 


  (4.10) 

where 1 id  depending on the direction of rotation. The constant scale factor for every 

rotation 
21 / 1 2 i

can be collectively treated as the system gain An of the CORDIC 

processor. This system gain can be expressed as 

 
21 2 i

n

n

A   .  (4.11) 

As the number of rotations increases, the system gain approaches a value of 1.647.  

With the rotation angle conformed to  1tan 2 i
, the magnitude becomes smaller 

with each rotation. An angle accumulator can be used to track the net angular 

displacement in one direction. If the initial angle is made known as well, the angle 

accumulator reveals the vector angle after the final rotation. The angle accumulated can 

be defined as 

  1

1 tan 2 i

i i iz z d  

   .   (4.12) 

2. Vector Rotation Mode 

There are two operating modes of CORDIC: rotation mode and vectoring mode. 

In rotation mode, a vector is made to rotate a specified angle in one direction 

progressively over several smaller rotations. The vectoring mode is used to find the angle 

of an input vector. At each iteration, the CORDIC rotates the vector toward the positive 

axis with the objective of reducing the y component of the resulting vector after each 

rotation. If the y component is negative, the next rotation is made in the counterclockwise 

direction, and the angle accumulator subtracts the angle displaced from the last rotation. 

If the y component is positive, the resultant vector is rotated in the clockwise direction, 
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and the angle accumulator adds the last displaced angle. At the end of the final iteration, 

the angle accumulator contains the total angular displacement, which is the result of the 

arctangent function. The CORDIC equations in vectoring mode are 

 1 2 i

i i i ix x y d 

   ,  (4.13) 

 1 2 i

i i i iy y x d 

   ,  (4.14) 

and 

 1

1 tan (2 )i

i i iz z d  

     (4.15) 

where 1id    if yi < 0 and 1id    if yi is otherwise. As the number of iterations 

approaches infinity, the final results are 

 2 2

n N o ox A x y  ,  (4.16) 

 0ny  ,  (4.17) 
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tann
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and 

 
21 2 i

N

n

A   .  (4.19) 

3. Initialization of the Angle Accumulator 

The CORDIC algorithm mentioned so far in this chapter is only effective when 

the angle of the vector of interest is between −90o and 90o, a range that lies in the first 

and fourth quadrants. To include vectors in the other two quadrants, an initial rotation is 

required to bring the vector into either the first quadrant or the fourth quadrant. In other 

words, z0 is initialized at 0o when the vector is in the first or fourth quadrant, 90o when it 

is in the second quadrant, and −90o when it is in the third quadrant [13]. The values for 

xo, yo, and zo after the initialization are summarized in Table 4. A flow chart that 

summarizes the CORDIC vectoring mode is shown in Figure 16. 
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Table 4. Values of xo, yo, and zo for Different Quadrants 

 
 

4. Design Methodology for I/Q Phase Converter  

The first step to design the I/Q phase converter is to model a CORDIC processor 

in MATLAB. The objective is to develop a benchmark to evaluate the performance of the 

CORDIC processor when it is modeled in the Verilog hardware description language. 

Although there is an existing CORDIC function built inside MATLAB, building one 

from scratch grants the design team full control of the CORDIC algorithm and access to 

xi, yi, and zi, which can subsequently be used to troubleshoot the Verilog model. The 

MATLAB model was first built using floating-point numbers to allow us to focus on 

addressing implementation error and algorithmic error. After the implementation of the 

CORDIC in floating-point format was assessed to be correct, a new model that calculated 

using fixed-point numbers was subsequently developed.  

C. FLOATING-POINT MODEL 

The floating-point model is relatively straightforward to implement as it can be 

constructed based on the flow chart in Figure 16. The inputs for the model are the I and Q 

values, which represent the vector Z = I + j Q. The number of rotations or iterations is 

decided by the parameter “iter.” Since the number of iterations affects the accuracy of the 

results, the design requires a suitable figure be identified.  
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Figure 16. Flow Chart for CORDIC Vectoring Mode 
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Before commencing the iterative rotation, the model determines whether there is a 

need for an initial rotation by checking the sign of I and Q to determine in which 

quadrant the input vector lies. The coordinates and angle of the vector after the initial 

rotation are stored inside three arrays: “X,” “Y,” and “Z.” The code to execute this check 

is listed as follows: 

. 

The rotation angles applied for each rotation are stored in the array “angleLUT,” 

which is defined as: 

. 

For a CORDIC processor that executes eight rotations, the stored rotation angles 

are shown in Table 5. 

Table 5. Rotation angles for an Eight-Iteration CORDIC Processor 

Iteration 1 2 3 4 5 6 7 8 

Angle 

(degree) 
45 26.5651 14.0362 7.1250 3.5763 1.7899 0.8952 0.4476 

 

The rotation angles become smaller and more precise after each subsequent iteration, 

which refines zi to become closer to the actual phase angle of the vector. 

The series of recursive rotations begins next. The direction of rotation “d(i)” is 

determined by the sign of yi. The code to execute the series of rotations is listed as 

follows: 
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. 

1. Simulation and Results 

A vector Z= −45 + j23 with an angle of 152.928o was used to demonstrate the 

CORDIC functionality. A visual representation of the vector rotations is presented in 

Figure 17. The input vector, being in the second quadrant, was rotated 90o in the 

clockwise direction to the first quadrant. The series of eight rotations followed next, 

gradually moving the vector towards the positive X-axis. The accumulated angle zi after 

every iteration is shown in Figure 18. It can be seen that zi tends to converge toward the 

actual phase angle of the vector. 

The numerical results from every iteration of the CORDIC algorithm are 

presented in Table 6. The angular displacement introduced by each rotation is listed in 

the column titled “Rotated Angle.” The absolute values of these angles equal the angles 

kept in “angleLUT”, and their signs indicate the direction of rotation. In the “Absolute 

phase error” column, the difference between the phase angles of the vector Z and zi after 

every rotation is shown, and they tend to get smaller, meaning that zi in general gets 

closer to the actual phase value as well. 
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Figure 17. Vectoring Mode CORDIC Iterations 

 

Figure 18. Cumulative Angle through Iterations 
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Table 6. CORDIC Calculation for Each Iteration 

 
 

The magnitude of Z is
2 245 23 50.5371  . The magnitude calculated by the 

CORDIC algorithm is actually the magnitude of xi. In Table 7, we see that as the iteration 

continues, the magnitude of xi has a scale factor that tends toward 1.647.  

Table 7. Magnitude of xi and Scale Factor in Each Iteration 

 
 

If I and Q are eight-bit binary words, there are a total of 261,121 combinations of 

inputs in all four quadrants. The surf plots of the results of the arctangent(Q/I) using a 

trigonometric function and using an eight-iteration CORDIC are presented in Figure 19 

and Figure 20. The two surf plots bear a strong resemblance to each other. Based on the 

results obtained, we assessed that the CORDIC precise calculation was implemented 

correctly in the floating-point format. 

Iteration xi yi zi (deg) Rotated Angle (deg) Absolute phase error (deg)

i=0 23 45 90 NA 62.92791976

i=1 68 22 135 -45 17.92791976

i=2 79 -12 161.5650512 -26.56505118 8.637131415

i=3 82 7.75 147.5288077 14.03624347 5.399112053

i=4 82.96875 -2.5 154.6538241 -7.125016349 1.725904296

i=5 83.125 2.685546875 151.0774897 3.576334375 1.850430079

i=6 83.20892334 0.087890625 152.8674003 -1.789910608 0.060519471

i=7 83.21029663 -1.212248802 153.762574 -0.89517371 0.83465424

i=8 83.21976732 -0.56216836 153.3149598 0.447614171 0.387040069

Iteration Xi |-45+23j|/Xi

i=0 50.53711507 1

i=1 71.47027354 1.414213562

i=2 79.906195 1.58113883

i=3 82.36542054 1.629800601

i=4 83.00640624 1.642484066

i=5 83.16837011 1.645688916

i=6 83.20896976 1.646492279

i=7 83.21912648 1.646693254

i=8 83.22166609 1.646743507
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Figure 19. Surf Plot for Arctangent(Q/I) Using Floating-Point Precision 

Calculation 

 

Figure 20. Surf Plot for Arctangent(Q/I) Solved Using Eight-Iteration CORDIC  
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2. Error Analysis 

Taking a closer look at Table 6, we see that the absolute phase error did not 

always decrease after every rotation. A similar observation is also mentioned in [14]. 

Nonetheless, there is a positive correlation between the total number of iterations and the 

accuracy of the CORDIC solution. The angle accumulated by zi after every rotation is 

represented by the basic angles that are stored in “angleLUT.” As these basic angles 

become smaller and more precise, an increase in the number of iterations allows the 

subsequent calculation to become more precise as well.  

An analysis of this relationship was carried out. The CORDIC algorithm was used 

to compute the phase angles with I and Q taking on eight-bit binary numbers from all 

four quadrants. The experiment was repeated with the number of CORDIC iterations 

varying from one to 18. The maximum phase error was logged for each CORDIC 

iteration and is presented in Table 8. The results affirm the correlation between iteration 

and accuracy. In addition, we observe that the magnitude of the error after i iterations is 

less than 2 i , which means the phase angle calculated is accurate to i binary digits.  

D. FIXED-POINT MODEL 

Having verified that the CORDIC algorithm was implemented correctly, we next 

convert the model to calculate the results of xi, yi, and zi using a fixed number of integer 

bits and fraction bits. The word format of the CORDIC inputs and output are aligned to 

the word format used by the DRFM memory and the DIS, as shown in Figure 21. The I 

and Q inputs are represented using eight integer bits and one sign bit, and the phase 

output of the CORDIC uses five integer bits to represent 0o to 360o.  

1. Word Length 

The DIS uses the quantization scheme in Table 3 to represent the values of the 

phase angle. On the other hand, the CORDIC uses five-bit signed numbers to represent 

angles, which are between −180o and 180o. This means if the vector phase angle is 270o, 

the CORDIC algorithm returns −90o. This does not pose a concern to the DIS because 

the binary expression of 270o using unsigned five-bit numbers and the binary expression 
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of −90o using signed five-bit numbers are both ‘11000’. The quantization scheme of the 

CORDIC algorithm is listed in Table 9. 

Table 8. Maximum Angular Error with Every Incremental Iteration 

Iteration 
Max absolute phase 

error (degree) 

Max absolute phase 

error (radian) 
Log2(error) 

1 45 0.78539816 −0.348503871 

2 26.56505118 0.46364761 −1.10889938 

3 14.03624347 0.24497866 −2.029271994 

4 7.125016349 0.12435499 −3.007463642 

5 3.576334375 0.06241881 −4.001875337 

6 1.789399349 0.03123091 −5.00088157 

7 0.895169329 0.01562365 −6.000124455 

8 0.447593141 0.00781197 −7.000097135 

9 0.223808221 0.00390619 −8.000022033 

10 0.111902544 0.00195307 −9.000042231 

11 0.055949652 0.00097651 −10.00008401 

12 0.027973199 0.00048822 −11.0001679 

13 0.013986868 0.00024412 −12.00014022 

14 0.006993631 0.00012206 −13.00009947 

15 0.003497044 6.1035 × 10−5 −14.00000537 

16 0.001748515 3.0517 × 10−5 −15.00001074 

17 0.000874253 1.5259 × 10−5 −16.00001886 

18 0.000437121 7.6292 × 10−6 −17.00003773 

 

Figure 21. I/O Bit Formats for CORDIC Phase Converter 
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Table 9. Quantization Scheme for DIS versus CORDIC 

DIS Quantization Scheme CORDIC Quantization Scheme 

Phase 

Angle 

(degree) 

Binary 

Representation 

Values of 

Binary 

Representation 

Phase output 

from 

CORDIC 

(degree) 

2s Complement 

Representation 

Values of 

Binary 

Representation 

0 00000 0 0 00000 0 

11.25 00001 1 11.25 00001 1 

22.5 00010 2 22.5 00010 2 

33.75 00011 3 33.75 00011 3 

45 00100 4 45 00100 4 

56.25 00101 5 56.25 00101 5 

67.5 00110 6 67.5 00110 6 

78.75 00111 7 78.75 00111 7 

90 01000 8 90 01000 8 

101.25 01001 9 101.25 01001 9 

112.5 01010 10 112.5 01010 10 

123.75 01011 11 123.75 01011 11 

135 01100 12 135 01100 12 

146.25 01101 13 146.25 01101 13 

157.5 01110 14 157.5 01110 14 

168.75 01111 15 168.75 01111 15 

180 10000 16 −180 10000 −16 

191.25 10001 17 −168.75 10001 −15 

202.5 10010 18 −157.5 10010 −14 

213.75 10011 19 −146.25 10011 −13 

225 10100 20 −135 10100 −12 

236.25 10101 21 −123.75 10101 −11 

247.5 10110 22 −112.5 10110 −10 

258.75 10111 23 −101.25 10111 −9 

270 11000 24 −90 11000 −8 

281.25 11001 25 −78.75 11001 −7 

292.5 11010 26 −67.5 11010 −6 

303.75 11011 27 −56.25 11011 −5 

315 11100 28 −45 11100 −4 

326.25 11101 29 −33.75 11101 −3 

337.5 11110 30 −22.5 11110 −2 

348.75 11111 31 −11.25 11111 −1 
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The number of integer bits and fraction bits for xi, yi, and zi are determined next. 

As the iteration carries on, xi grows and its magnitude converges toward a value that is 

the magnitude of the input vector times the scale factor of 1.647. The largest magnitude, 

when I and Q have a magnitude of 255, is 

      2 2

max
255 255 1.414 255 1.414 I   Z   (4.20) 

where I is the magnitude of I.  This leaves xn to be 

        1.647 1.414 255 2.331 I nx .  (4.21) 

As a result, xi has to be given two more integer bits, making a total of ten integer bits plus 

one sign bit in order to have enough accuracy. With every rotation, yi becomes smaller 

and requires more precision, and, hence, more fraction bits; otherwise, the next direction 

of rotation could be wrong and result in an incorrect add/subtract operation of the rotation 

angle from “angleLUT.” In addition, zi also receives one more integer bit, giving it a total 

of five integer bits and one sign bit. The additional integer bit is required when 

calculating a vector that has a phase angle close to 180o or −180o. As the initial few 

rotations can all be made in the same direction, at one stage zi could become larger than 

180o or less than −180o, which are not representable by a five-bit signed number; hence, 

the need to introduce an additional integer bit. As zi converges more, the vector returns to 

quadrants two or three, and the subsequent results only require four integer bits for 

representation.  

2. Implementation Using MATLAB 

The changes made in order to implement a CORDIC processor using fixed 

number format are the following: 

1. The fixed-point numbers are constructed using the ‘fi(v,s,w,f)’ function in 

MATLAB where ‘v’ is the value of origin word, ‘s’ indicates whether the 

fixed-pointe number is signed or unsigned, ‘w’ is the length of the entire 

fixed-point number, and ‘f’ is the number of fraction bits. 
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2. As the phase angles are quantized at 11.25o per bit, the rotation angles in 

“angleLUT” are divided by 11.25 before being used in the “fi” function as 

parameter ‘v’. 

3. The multiplication by 2i  is carried out by using the bit-shift operation – the 

‘bitsra(a, k)” function where ‘a’ is right-shifted arithmetically by k number of 

bits. 

4. After all the rotations are completed, the results are rounded to the nearest 

integer bit, and the five least significant integer bits are extracted to form the 

phase result of the CORDIC processor.  

3. Simulation and Results 

The same complex vector Z = −45 + 23j is used to test the CORDIC processor 

functionality in using fixed-point numbers. A visual representation of the vector rotation 

is presented in Figure 22, and the accumulated angles zi after every iteration are shown in 

Figure 23. Just like the results from the floating-point model, the vector was 

progressively rotated toward the positive x-axis, and calculated angles converged toward 

the theoretical value. The numerical results from every iteration of the CORDIC are 

presented in Table 10. Here, the values of yi and the ones from Table 6 share the same 

sign, implying that the vector was being rotated in the same direction for each iteration in 

both simulations.  

Table 10. CORDIC Calculation for Z = −45 + 23j 

Using Fixed-Point Numbers 
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Figure 22. CORDIC Iterations Using Fixed-Point Numbers 

 

Figure 23. Cumulative Angle through Iterations Calculated 

Using Fixed-Point Numbers 

The binary representation of zi is shown in Table 11. The phase stored in z8 was 

used to derive the final result by following the procedure in Table 12. 
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Table 11. Binary Representation of zi for Z = −45 + 23j 

Iteration zi Iteration zi 

i=0 0010000000000 i=5 0011010110110 

i=1 0011000000000 i=6 0011011001010 

i=2 0011100101110 i=7 0011011010100 

i=3 0011010001110 i=8 0011011001111 

i=4 0011011011111   

 

Table 12. Steps to Represent CORDIC Result for Z = −45 + 23j 

Using Five Bits 

S/N Steps Result 

1 
Extract the five least significant integer bits and the 

most significant fraction bit. 

011011 

 

2 
If the fraction bit is ‘1’, increase the five-bit number 

by 1. 
01110 

3 
Multiply decimal representation of the result by 

11.25o to get the phase angle. 
14 × 11.25o =  

157.50o  

4 
Find the phase error by applying 

tan−1(Q/I) − CORDIC result. 

152.927919o − 157.50o =  

−4.572080o  

 

To illustrate that the model works for a vector that is in quadrant three, another 

vector is used: Z2 = −45 − 23j. The binary representation for zi is shown in Table 13. 

Table 13. Binary Representation of zi for Z = −45  − 23j  

Iteration zi  

i=0 1110000000000 

i=1 1101000000000 

i=2 1100011010010 

i=3 1100101110010 

i=4 1100100100001 

i=5 1100101001010 

i=6 1100100110110 

i=7 1100100101100 

i=8 1100100110001 
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The final calculation, as illustrated in Table 14, yields ‘10010,’ which represents 

202.50o.  

Table 14. Steps to Represent CORDIC Result for Z = −45 − 23j 

Using Five Bits 

Step Procedures Result 

1 
Extract the five least significant integer bits 

and the most significant fraction bit. 

100100 

 

2 
If the fraction bit is ‘1’, increase the five-bit 

number by 1. 
10010 

3 
Multiply decimal representation of the 

result by 11.25o to get the phase angle. 
18 × 11.25o = 202.50o 

4 
Find the phase error by applying 

tan−1(Q/I) − CORDIC result. 

(−152.927919o + 360o) − 

202.50o = 4.572080o  

 

To test the ability of the CORDIC processor to handle interim angles that are 

larger than 180o, the vector Z3 = −230 + 1j was used. The numerical result is shown in 

Table 15. For iteration i = 1, 2, 3 and 4, the vectors were rotated in the same direction, 

and this caused z4 to exceed 180o, creating an overflow into the second most significant 

bit (MSB) which was added to contain this situation. The subsequent iteration featured 

rotation in the opposite direction, bringing z5 back below 180o and toward the correct 

value eventually. After all the rotations were completed, z8 was rounded to the nearest 

integer bit, and the CORDIC processor returned −180o or ‘10000’ as the result. The DIS 

received the phase result as ‘10000’ as an unsigned number and interpreted it as 180o.  

A surf plot is displayed in Figure 24, from which we see that the results of the 

arctangent function solved using the CORDIC algorithm are quantized into 32 values. 

Based on the results of the test conducted thus far, we assess that the CORDIC processor 

using fixed-point numbers was implemented correctly. 
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Table 15. CORDIC Calculation for Z = −230 + 1j 

Using Fixed-Point Numbers 

 

 

Figure 24. Surf Plot for Arctangent(Q/I) Solved by Eight-Iteration CORDIC 

Using Floating-Point Precision Calculation 

 

 

 



 51 

4. Error Analysis 

The requirement on precision is investigated next. Since the last stage of the 

CORDIC process involves rounding the first fraction bit to the nearest integer bit, the 

CORDIC processor must be able to resolve 5.625o. This means that the maximum error 

must be less than that. The criteria to represent an input vector with an angle around 

5.625o as ‘00000’ or ‘00001’ is illustrated in Figure 25. 

The eight-iteration CORDIC algorithm that was used so far is unable to provide 

that kind of precision. The absolute angular error distributed over the angles between 

−180o and 180o is shown in Figure 26. A magnified version of the figure is shown in 

Figure 27, in which we see that the CORDIC is not accurate enough in some instances. 

The accuracy can be increased by increasing the number of iterations and the fraction bits 

for xi, yi, and zi. The improvement in accuracy when the number of iterations increases 

from eight to 16 and then to 18 is shown in Figure 28. In fact, after 18 iterations, all the 

error magnitudes are less than 5.625o. The maximum errors for five iterations to 18 

iterations are presented in Table 16. Based on this result, we decided that the CORDIC 

processer will use 18 iterations in the design. 

 

Figure 25. Criteria for Rounding Up or Down 
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Figure 26. Absolute Angular Error for an Eight-Iteration CORDIC Processer  

 

Figure 27. Close-Up View of Figure 25 
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Figure 28. Angular Error for 8-Iteration, 16-Iteration, and 18-Iteration 

CORDIC Processors 

Table 16. Maximum Phase Error for CORDIC Processors with 

Different Iterations (5 to 18) 
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E. IMPLEMENTATION USING VERILOG 

The implementation of the CORDIC algorithm using the Verilog hardware 

description language is discussed in this section. Verilog was chosen since the DIS has 

already been implemented in Verilog. Instead of utilizing existing CORDIC Intellectual 

Property cores created by a Field Programmable Gate Array original equipment 

manufacturer such as Xilinx or Altera for their own products, the codes that describe the 

CORDIC processor were crafted based on the CORDIC Equations (4.13), (4.14), and 

(4.15). The advantage of doing this is that the hardware implementation does not have to 

be tied to a specific hardware platform.  

1. Overview 

The Verilog code for CORDIC processing is adapted from an open source version 

written for implementing the CORDIC algorithm in the rotation mode [15]. The code 

uses behavioral modeling that shares a similar coding style with MATLAB. In fact, the 

MATLAB code and the Verilog read very similar to each other and only differ in a few 

ways. First, the signs of xi and yi are determined by their MSB, which is a ‘0’ for a 

positive 2s complement number and ‘1’ for a negative number. Second, every rotation is 

triggered by an event, which in this case is the positive edge of the rising clock. Third, 

registers are used to hold the values for xi, yi, and zi, and to pass them to the next stage of 

processing, which results in the CORDIC processor having a pipelined architecture. The 

Verilog code for the CORDIC processor can be found in Appendix B. 

2. Simulation and Results 

The simulation began after the Verilog codes for the CORDIC processor and its 

test bench files were completed and able to be compiled. The test cases and results are 

described in the following subsections. 

a. Input: Z = −45 + 23j 

The same complex vector previously used to test the MATLAB models was used 

again to test the Verilog model. The CORDIC processor was able to return the phase 

result as ‘01110’, which is identical to the one generated by the MATLAB model. The 
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values of xi, yi, and zi from the Verilog model were converted to an unsigned number and 

compared with those from the MATLAB model. The results, featured in Figure 29, show 

that these values are identical. The screenshot of the simulation in ModelSim is presented 

in Figure 30.  

 

Figure 29. Comparison of xi, yi, and zi Calculations by MATLAB and Verilog 

b. Input: I = 0, Q = 0 

The next simulation aimed to test the ability of the CORDIC processor to 

calculate the phase angle when the inputs are the origin coordinates. While the values for 

xi and yi remain at zero, the sign of yi is decided as ‘0’ during each iteration, causing zi to 

grow by accumulating more rotation angles from the “angleLUT.” This is avoided by 

forcing the final phase output to be zero if x18 is checked and found to be zero. The 

screenshot of the simulation in ModelSim is presented in Figure 31. Here, we see that the 

phase output generated is zero after 18 positive-rising edges of the clock. 

c. Pipeline  

To test this critical feature, three inputs were clocked consecutively over three 

clock cycles. The screenshot of the simulation in ModelSim is presented in Figure 32, 
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which shows that 18 clock cycles later, the three results emerged from the CORDIC 

processor over three consecutive clock cycles in a first-in-first-out fashion.  

d. Input: All Possible Combinations 

The final test involves using all the possible nine-bit integer values as input. The 

results are then compared to results generated by MATLAB and show a complete match.  

F. CONCLUSION 

The design and testing of an I/Q phase converter was discussed in this chapter. 

The result was an 18-iteration CORDIC processor which takes 18 clock cycles to 

generate phase samples quantized at five bits for the DIS in a pipelined manner. The 

simulation of sea clutter to improve the false target image is examined in the next 

chapter. 
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Figure 30. ModelSim Simulation Using I=−45, Q=23 with Phase Result (Zout) Showing 5’b01110 

 

 

Figure 31. ModelSim Simulation Using I=0, Q=0 with Phase Result (Zout) Showing 5’b00000 
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Figure 32. ModelSim Simulation Showing Pipelined Output 
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V. SEA CLUTTER TARGET PROFILE 

The characteristics that an ISAR operator can use to identify a false image 

synthesized by the DIS are described in Chapter I. The false target profile is built with a 

limited number of point scatterers and does not include the environment such as the 

clutter return and the noise return. In this chapter the inclusion of a sea clutter profile in 

the DIS with the aim of making the false target appear realistic is discussed. 

A. COHERENT SEA CLUTTER SIMULATIONS 

The sea clutter model used in this thesis is adapted from the research done by 

previous students and scientists from the Center for Joint Services Electronic Warfare. 

The sea clutter model was developed initially by Brooks [16], who studied the works of 

Ward, Watts, and Walker. The model was subsequently improved by Dr. Sebastian 

Teich, a visiting scientist from Germany, to support the design of an antenna for surface 

vessels. With help from Dr. Teich, the model was modified to fit the context of a high-

resolution radar mounted on an airborne platform. In the model, the amplitude and 

Doppler of the sea clutter are random variables that fluctuate according to two separate 

random distributions.  

1. Clutter Amplitude Model Using the KA Distribution 

In his sea clutter model, Brooks used a KA distribution to calculate the return sea 

clutter power [16]. The model allows the user to simulate the sea clutter by specifying the 

sea state condition, RF polarization, a normalized RCS model, and a wind direction. In 

this research, a horizontal polarization and a normalized RCS model developed by the 

Naval Research Laboratory [17] is used. Unlike a surface radar, an airborne radar has a 

different grazing angle as displayed in Figure 33. 



 60 

 

Figure 33. Clutter Geometry for Airborne ISAR. Adapted from [18]. 

From [20], given an aircraft at height h above the ground, the grazing angle graz  at a 

given range R can be expressed as 

 
2

1sin
2 2

graz

e e

h h R

R r R r
   

   
 

  (6.1) 

where re is the effective Earth radius. The relationship between R and graz  at a constant h 

is shown in Figure 34. The area of the illuminated patch c
A  can be approximated as 

 _ 3 sec( ) c az dB rISAR grazA R d   (6.2) 

where rISAR
d  is the slant range resolution and _ 3az dB is the ISAR azimuth beamwidth. 

This relation is shown in Figure 34. 

a. The NRL Normalized RCS Model  

The radar range equation is used to calculate the mean clutter return power o

RCP  

and is expressed as 



 61 

 
2 0

0

3 4(4 )

T t r c
RC

P G G A
P

R L

 


   (6.3) 

where 0 is the normalized mean sea clutter scatter coefficient, which can be obtained 

using the NRL model, and t
G  and r

G are the transmit and receive gain, respectively. 

Also, T
P  is the peak power of the pulsed-ISAR waveform transmitted, L represents 

losses, and   is the carrier wavelength. The NRL model describes an empirical 

relationship, which is expressed as 
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where 
0

, HH VV is the normalized co-polarized RCS, SS is the Douglas sea state, GHzf is the 

carrier frequency in GHz, and 1 2 3 4, , ,c c c c , and 5c are free parameters that are adjusted to 

minimize the average absolute deviation between the empirical equation and a set of data 

collected by Nathanson [17]. The Douglas sea state describes the roughness of the sea 

wave surfaces and is shown in Table 17. The free parameters values from the NRL model 

are shown in Table 18. 

Table 17. Summary of Sea State. Source: [17]. 

Sea State Description Wave height 

(ft) 

Wind speed 

(kn) 

Fetch 

(nmi) 

Duration 

(h) 

1 Smooth 0-1 0-6   

2 Slight 1-3 6-12 50 5 

3 Moderate 3-5 12-15 120 20 

4 Rough 5-8 15-20 150 23 

5 Very rough 8-12 20-25 200 25 

6 High 12-20 25-30 300 27 

7 Very High 20-40 30-50 500 30 
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Table 18. Summary of NRL Model Free Parameters. Source: [17]. 

 Polarization 

Constants Horizontal Vertical 

c1   73.00   50.79 

c2 20.78 25.93 

c3 7.351 0.7093 

c4 25.65 21.58 

c5 0.00540 0.00211 

b. Clutter Parameter Comparison 

The inputs for the NRL RCS model are grazing angle, RF polarization, carrier 

frequency, and sea state condition. For this thesis research, the RF polarization and the 

carrier frequency are fixed to horizontal polarization and 10 GHz, which are normally the 

specifications for an ISAR radar such as the APS/137 ISAR. The effect of the grazing 

angle and sea state on the normalized RCS are presented in this section. 

(1) Grazing Angle 

Assuming that the height of the aircraft h remains constant, we see that the 

grazing angle graz  decreases as the slant range R increases. This is illustrated in Figure 

34 with the main objective to show the relationship between R and graz . The effect this 

has on 0 is illustrated in Figure 35 where 0  decreases as graz  increases. The RCS of a 

clutter patch c  is the product of c
A  and 0 , or 0 c cA . The relationship between c

and R, assuming h is constant, is displayed in Figure 36. The illuminated area c
A  

increases significantly less and results in an overall decrease in the clutter patch c . 

(2) Sea State 

The effect the sea state SS has on 0 is displayed in Figure 37, which shows the 

normalized RCS as a function of R for sea state 2 through 7. Here, it can be seen that an 

increasing SS leads to an increase in 0  as well. Based on (6.3) the increase in 0  

consequently increases the o

RCP  as well and is shown in Figure 38 as a function of range 

R. 
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Figure 34. Grazing Angle versus Range 

 

Figure 35. Normalized RCS versus Range 
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Figure 36. RCS versus Range 

 

Figure 37. Normalized RCS for Sea Clutter at Different Grazing Angles and SS 
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Figure 38. Received Power from Sea Clutter at Different SS 

c. Power fluctuation via Compound KA Distribution 

The sea clutter simulation model developed by Brooks is comprised of a slow 

moving component called texture that represents the local sea structures such as Bragg 

scatterers and distributed white caps [16], [19]. It also includes a fast moving component 

called speckle that represents structures such as sea spray, discrete white caps, and 

bursts [20]. The texture is modeled using a gamma distribution, and the speckle follows 

an exponential distribution. The final expression for the fluctuating sea clutter power is 

expressed as 

 0
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  (6.5) 

where x is the texture, z is the clutter power, n is the number of instantaneous bursts 

found in a range cell [19], [21], and ρ is the ratio of the burst power to the Bragg power. 

A Poisson distribution is used to describe the occurrence of n, which is approximated by 
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  (6.6) 
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where N is the probability of a spike. 

2. Modeling of Fluctuating Sea Clutter Spectra 

The model for the Doppler spectrum for a single range cell is [16] 
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where v is the Doppler frequency, ( )fm x is the mean Doppler frequency as a function of 

texture x, and s is the standard deviation. The mean frequency can be expressed as 
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where α and β are expressed as [16], [22], [23] 
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where 0.25k   for horizontal polarization and 0.18 for vertical polarization [16], [22]. 

The Doppler shift introduced by the motion of the transmitting platform is Df and is set to 

zero for the relative motion to the clutter as is the case for a stationary ISAR radar. The 

wind velocity U is approximated as [16] 

  0.83.16U SS .  (6.10) 

The standard deviation of the clutter spectrum s follows a Gaussian distribution as 
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where 20
s

  Hz, and the mean ms is given by 
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where w  is the headwind direction. 

3. Generating Random Sea Clutter Power and Doppler Spectrum 

The fluctuating sea clutter power spectral density is generated when the mean 

clutter power in (6.3) is applied to the distribution described in (6.5) and (6.7). The mean 
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clutter power and the fluctuating power for each range bin within the radar main beam is 

shown in Figure 39. The power spectral density, an example of which can be seen in 

Figure 40, provides the information on phase and amplitude which can be used to create 

the phase coefficient and gain coefficient for the sea clutter profile to improve the DIS. 

The MATLAB code created to simulate the sea clutter for the DIS is found in Appendix 

A and requires MATLAB code, KdistributionTexture.m, in order to work. 

 

Figure 39. Mean Power and Fluctuating Power of Sea Clutter 

B. PHASE AND GAIN COEFFICIENTS FOR THE SEA CLUTTER 

In this section the simulation of sea clutter returns to an ISAR radar and the 

extraction of the phase and the amplitude information from the sea clutter spectrum to 

create the phase and gain coefficients are discussed.  

In Table 19 contains a set of radar parameters that are used to simulate the sea 

clutter return is given. Information on the operating environment is also included in the 

table. The radar parameters used are similar to that of the APS 137 ISAR radar [4]. 
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Figure 40. Power Spectral Density of Sea Clutter at SS=2  

Table 19. Radar Parameters and Operating Environment 

Parameter Values Parameter Values 

Frequency 10 GHz Elevation Beamwidth 4.5o 

Range Resolution 0.3 m Azimuth Beamwidth 1.05o 

Transmit Gain 32 dB PRF 200 Hz 

Receive Gain 32 dB Bandwidth 500 MHz 

Loss 3 dB Pulse integration 128 

Power 500 W Polarization Horizontal 

Operating Environment 

Range 3,000 m Radar height 8,000 ft 

Grazing Angle 54.4o Head wind direction 20o 

Sea state 2   

 

The sea clutter power density spectrum attributed to the radar main beam is 

shown in Figure 41. The target, which spans 32 range bins, is assumed to be located in 

the center of the radar beam. The spectra at these range bins are extracted and enlarged in 

Figure 42. 

The power spectral density diagrams for range bins 7, 13, 22 and 32 are shown in 

Figure 43. The spectra appear different in shape, with range bins 13, 22, and 32 showing 

a Gaussian outline while range bin 7 resembles a discrete target. They also have different 
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degrees of ‘spikiness.’ Such wide-ranging differences reflect the probabilistic nature of 

the complex wave surfaces of the sea clutter model. 

 

Figure 41. Power Density Spectrum of Sea Clutter 

 

Figure 42. Power Density Spectrum of Sea Clutter in Range Bins 

Where Target Resides 
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The power and Doppler components of the spectrum for each range bin are saved 

and exported to extract_para_Ship_v5.m where they are used to reconstruct the sea 

clutter return. Just like the target return in (3.1), the clutter return is in complex form and 

can be represented as a function of the transmitted pulse index and coordinate location on 

the range-Doppler profile map. It can also be consolidated at each range bin for each 

pulse by 

 
1

( , , )
dN

d

ClutterSum Clutter r d n


 .  (6.13) 

The clutter return is added to the target return to form a new complex signal 

( , )T r n , which is then used to generate the phase coefficient and gain coefficient. The 

new complex signal is expressed as 

 ( , ) ( , ) ( , )  T r n T r n ClutterSum r n .  (6.14) 

 

 

Figure 43. Power Spectrum for Range Bins 7, 13, 22, 32 
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1. Generating the Phase Coefficient with Sea Clutter 

The phase coefficient for ( , )T r n  is generated in the same way as is the phase 

coefficient for ( , )T r n  described in Chapter III. The phase angle of ( , )T r n  is derived 

by using its real and imaginary components  
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Subsequently, the phase coefficient can be generated before it is quantized at five-bits 

 ( , ) ( , 1) ( , 1) ( , )          inc inc T Tr n r n r n r n .  (6.16) 

 

2. Generating the Gain Coefficient with Sea Clutter 

Similarly, the gain coefficient is generated using the same method as described in 

Chapter III as 
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3. Simulation and Results 

The phase and gain coefficients derived from (6.16) and (6.17) are used to 

modulate the phase samples of the ISAR LFM signal. The output from the DIS is 

returned to the DRFM and subsequently transmitted back to the ISAR.  The resultant 

range-Doppler images are discussed in the following subsection. 

(1) Combined Image 

The ISAR image that describes the range-Doppler profile of the target plus the sea 

clutter ( , )T r n  is shown in Figure 44. Initially, the amplitude of the ship ( , )T r n  is 

much larger compared to that of ClutterSum(r,n), causing the sea clutter to be 

insignificant. This is caused by the estimates of the target ship RCS being too large. A 

more accurate set of RCS values is found from a high-resolution range profile generated 

using CST Microwave, an EM simulation software tool that uses a three-dimensional 

Computer Aided Design model of a transport ship. This is related once again to the 
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modeling of the false target and is reserved for future study. The inclusion of the sea 

clutter has blurred the edge of the ship to some extent. The range-Doppler image of the 

sea clutter on its own is shown in Figure 45. Unlike the ship target, the sea clutter 

remains continuous in the Doppler axis. 

(2) Effect of Different Sea States 

The effect that sea state has on the sea clutter image is investigated next. The sea 

clutter at sea states 3 and 4 was extracted and separately combined with the target return 

of the ship to form two more range-Doppler images. The images for the ship target 

without sea clutter and with sea clutter at sea states 2–4 are consolidated in Figure 46 for 

comparison. We see that at higher sea states, more streaks of sea clutter appear on the 

image, which can be explained by the higher level of power return due to the increase in 

0 . In higher sea states, the velocity of the sea clutter and target increases. For this 

simulation, the target is fixed in Doppler.  

(3) Doppler Resolution 

The sea clutter shown in Figure 42 is created based on a Doppler resolution 

 clutterf  of 1.5625 Hz and is able to appear continuous to an ISAR sharing the same 

Doppler resolution f , as seen in Figure 45. If the ISAR increases its f  further, the 

sea clutter starts to display discontinuity as can be seen in Figure 47. The continuity in 

the Doppler axis is restored by remodeling the sea clutter based on a higher Doppler 

frequency resolution. As shown in Figure 48, when 0.78125 f  Hz, the sea clutter 

remodeled with 0.78125 clutterf  Hz remained continuous, while the banding gaps 

widened for the ship target. 
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Figure 44. Range-Doppler Test Image of False Target and Sea Clutter 

 

Figure 45. Range-Doppler Test Image of Sea Clutter 
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Figure 46. Range-Doppler Test Images at Different Sea States 

 

Figure 47. Sea Clutter ( 1.5625  clutterf Hz) Showing Discontinuity When 

0.78125 f  Hz 
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Figure 48. Sea Clutter ( 0.78125  clutterf Hz) Showing Continuity When 

0.78125 f  Hz 

(4) Number of Doppler Samples 

The Doppler components at each individual range bin contribute to the formation 

of the range-Doppler profile; therefore, the number of samples taken from the power 

spectrum density determines the number of Doppler components and the appearance of 

the sea clutter on the range-Doppler image which can be seen in Figure 49. In general, the 

fewer the samples, the shorter the sea clutter appears. 

(5) Creating a Blurry Ship Target 

If the desired intent is just to blur the edge of the ship target without 

oversaturating the entire ISAR image, this can be achieved by using only the sea clutter 

return, which has similar Doppler frequencies to those of the ship target, to create 

( , )T r n . As an example, suppose the minimum and maximum Doppler component of 

the ship target in each range bin is min{ }Tid  and max{ }Tid , respectively, where 
T
i
d is the 

set of all the Doppler frequencies that are present in a range bin i. The sea clutter returns 

with Doppler frequencies that are greater than min{ }Tid f   and smaller than 
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max{ }T
i
d f   can be used to construct ( , )T r n , while the Doppler frequencies falling 

outside this range are discarded. The result can be seen in Figure 50, in which the sea 

clutter has managed to make the edge of the ship target appear blurred. In fact, the sea 

clutter has even managed to cover the banding gap of the ship target to some extent. 

White Gaussian noise can be added to make the simulated ISAR image, such as the one 

shown in Figure 51, further resemble the real ISAR image that is shown in Figure 1. 

Nevertheless, since the sea clutters are randomly generated, there is no guarantee that 

they will appear at every range bin with sufficient amplitude to cover the gap such as the 

one that is apparent in range bins 17 – 19 in Figure 50 and Figure 51. 

 

Figure 49. Range-Doppler Test Images for Sea Clutter Formed Using Different 

Numbers of Samples 
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Figure 50. Test Image Showing the Use of Sea Clutters to Cover the Banding 

Gaps of the False Target  

 

Figure 51. White Gaussian Noise Added to Figure 50 

C. CHAPTER SUMMARY 

The simulation of sea clutter for a high-resolution airborne radar was 

demonstrated in this chapter. Characteristics of the sea clutter range-Doppler profile were 

also discussed. The limitation of improving the fidelity of the DIS false target using sea 

clutter was also presented. Inevitably, the way ahead to improve the fidelity is to study 

the EM return of the ship target in a real-world environment. This recommendation is 

highlighted with other recommendations in the next chapter.  
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VI. CONCLUSIONS AND RECOMMENDATIONS 

This thesis has two objectives. The first objective was to design a phase converter 

and implement it in Verilog to support the ongoing development of the DIS. The second 

objective was to incorporate backscatter returns from the environment into the DIS false 

target image in order to improve its fidelity, thereby improving DIS effectiveness as an 

electronic protection solution for an ISAR. 

In this thesis, a phase converter that utilized the CORDIC algorithm was designed 

using MATLAB and subsequently implemented in Verilog. The phase converter 

produced a five-bit phase result using nine-bit input I and Q data on each rising clock 

edge after an 18-clock pulse latency delay. Much time and effort were put into 

determining the number of iterations for the design so that the phase results would be 

accurate using a resolution of five bits. The phase converter also used a pipelined design 

that allowed the phase results to be produced on each clock cycle.   

The creation of a sea clutter target profile for the DIS was also studied in this 

thesis. An existing sea clutter simulation model for the surface platform was adapted and 

modified to generate sea clutter for an airborne ISAR platform. The modified sea clutter 

model retained the ability in generating sea clutter at different sea states, waveform 

polarizations, and wind heading angle while using the normalized RCS model developed 

by NRL for a high grazing angle up to 60o [17]. Using a random probabilistic model, we 

generated the sea clutter Doppler power spectrum to create the phase and gain 

coefficients for the sea clutter in the DIS. Since the sea clutter had a high Doppler 

resolution, the sea clutter maintained a convincing appearance as the ISAR increased its 

Doppler resolution. 

In addition to the phase angle, the amplitude of the complex vector is another 

output from the phase converter, but it was not used in the DIS design. This piece of 

information is required to reconstruct the proper DRFM output power as shown in Figure 

52. Since the amplitude is also scaled by a factor of 1.647, the CORDIC algorithm must 

be modified in order to have this scale factor taken into account. 
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Figure 52. Use of the Amplitude Output of the Phase Converter to Reconstruct 

the ISAR Waveform 

In this work, we evaluated the fidelity and image creation process of the DIS 

using a test pattern image. Further, insight into the bit-resolution influence on image 

quality was examined. Suggested future effort is to investigate a realistic image formation 

process. 

Going forward, validation of the sea clutter model by collecting data in the 

Monterey Bay using a range-Doppler radar would aid in the creation of a realistic false 

target. The banding gaps described in this research were due to the finite resolution of the 

false target used to extract the imaging coefficients. A realistic false target can be 

generated by illuminating and collecting the ISAR waveform from a detailed target 

model using EM simulation software like CST Microwave Studio. 
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APPENDIX A.  MATLAB CODES  

A. CORDIC IMPLEMENTATION USING FLOATING POINT NUMBERS 

clear all 

clc 

iter=8; 

I =0;   % I signal 

Q =0;   % Q signal 

  

ideal_angle = atan2d(Q, I); 

X = zeros(iter+1,1); % Xin 

Y = zeros(iter+1,1); % Yin 

Z = zeros(iter+1,1); % Zout; 

d = zeros(iter+1,1); % direction vector 

angleLUT = atand(2.^-(0:iter-1)); 

  

if (I>=0 && Q >=0) || (I>=0 && Q<0) %Quadrant 1 or 4 

    X(1) = I; 

    Y(1) = Q; 

    Z(1) = 0; 

elseif I<0 && Q>=0 % Quadrant 2 

    X(1) = Q; 

    Y(1) = -I; 

    Z(1) = 90; 

elseif I<0 && Q<0 % Quadrant 3 

    X(1) = -Q; 

    Y(1) = I; 

    Z(1) = -90; 

end 

     

% rotate the vector for iter-number of times 

for i = 1:iter 

    if Y(i) < 0 

        d(i) = 1; 

    else 

        d(i) = -1; 

    end 

    X(i+1) = X(i) - Y(i)*d(i)*2^-(i-1); 

    Y(i+1) = Y(i) + X(i)*d(i)*2^-(i-1); 

    if(X(i+1)==0 && Y(i+1)==0) %if the inputs are the origin points 

       Z(i+1)=0; 

    else 

        Z(i+1) = Z(i) - d(i)*angleLUT(i); 
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    end 

    fprintf('Iteration: %2d, Calculated angle after iteration: %7.3f, Rotated angle: %7.3f, 

Error in degrees: %10g, Error in bits: %g\n',... 

        [(i-1); Z(i);  - d(i)*angleLUT(i);(Z(i)-ideal_angle);log2(abs(Z(i)-ideal_angle))]); 

end 

fprintf('Iteration: %2d (Last), Rotated angle: %7.3f, Error in degrees: %10g, Error in bits: 

%g\n',... 

        [(i); Z(i+1);  (Z(i+1)-ideal_angle);log2(abs(Z(i+1)-ideal_angle))]); 

  

for i = 1:iter 

    fprintf('Iteration: %2d, Rotator magnitude: %g, Rotator scale factor: %g\n',... 

    [i-1; sqrt(X(i)^2+Y(i)^2); sqrt(X(i)^2+Y(i)^2)/sqrt(I^2+Q^2)]); 

end 

  

    fprintf('Iteration: %2d (Last), Rotator magnitude: %g, Rotator scale factor: %g\n',... 

    [i; sqrt(X(i+1)^2+Y(i+1)^2); sqrt(X(i+1)^2+Y(i+1)^2)/sqrt(I^2+Q^2)]); 

  

figure (1) 

cmap = colormap(lines(iter+3)); 

plot([0 I],[0 Q],'LineWidth', 2, 'Color',cmap(1,:)) 

legendInfo{1}=['Input Vector']; 

hold on 

plot([0 X(1)],[0 Y(1)],'LineWidth', 2, 'Color',cmap(2,:)) 

legendInfo{2}=['After initial rotation']; 

for i=2:iter 

    plot([0 X(i)],[0 Y(i)],'LineWidth', 2, 'Color',cmap(i+1,:)); 

    legendInfo{i+1}=['After rotation ' num2str(i-1)]; 

    hold on 

end 

plot([0 X(i+1)],[0 Y(i+1)],'LineWidth', 2, 'Color',cmap(i+2,:)) 

legendInfo{i+2}=['After rotation ' num2str(i), ' (Last)']; 

yPos=0; 

plot(get(gca,'xlim'), [yPos yPos], '-.k', 'LineWidth', 2); 

legend(legendInfo) 

hold off 

grid on 

xlabel('I') 

ylabel('Q') 

title('Vectoring Mode CORDIC Iterations') 

  

figure(2) 

plot(0:iter,Z(1:iter+1),'-dr','LineWidth', 2,'MarkerEdgeColor','k',... 

     'MarkerFaceColor',[.49 1 .63],... 

     'MarkerSize',10) 

hold on 
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yPos_angle=ideal_angle; 

plot(get(gca,'xlim'), [yPos_angle yPos_angle], '-.k', 'LineWidth', 2); 

legend('Calculated angle', 'Actual angle') 

hold off 

xlabel('Iteration') 

ylabel('Angle (degrees)') 

title('Cumulative Angle Through Iterations') 

 

B. CORDIC IMPLEMENTATION USING FIXED-POINT 

IMPLEMENTATION 

clear all 

clc 

  

iter=18;       % # of iteration 

inputbit = 9; % 1 sign bit 8 integer bit 

%%%%%%%%%%%%%%% I Q 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

x = -230; 

y = -1; 

I = fi(x,1,inputbit,0);   % I is a 9-bit word with 1 sign bit and 8 integer bit 

Q = fi(y,1,inputbit,0);   % Q is a 9-bit word with 1 sign bit and 8 integer bit 

mag_ideal = abs(x+y*1i); 

phase_ideal = atan2d(y, x); 

%%%%%%%%%%%%%%% X Y 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

frac_length = 18; % # fraction bit in X & Y 

X = fi(zeros(iter+1,1),1,inputbit+2+frac_length,frac_length); % X array is a 

9+frac_length+2(overflow) bit word with 1 sign bit, 10 integer bit and frac_length 

fraction bit 

Y = fi(zeros(iter+1,1),1,inputbit+2+frac_length,frac_length); % Y array is a 

9+frac_length+2(overflow) bit word with 1 sign bit, 10 integer bit and frac_length 

fraction bit 

  

%%%%%%%%%%%%%%%% Z 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

nbits = 5; % # bits in phase output 

Z_fl = 17;   % # fraction bit in phase 

phase_res = 360/2^nbits; %angle per bit 

angleLUT = fi(atand(2.^-(0:iter-1))/phase_res,1,nbits+Z_fl,Z_fl); 

Z = fi(zeros(iter+1,1),1,nbits+Z_fl+1,Z_fl); % Z array is a 5+1+Z_fl bit word with 1 sign 

bit, 5 integer bit (1 integer is a guard bit for overflow) and Z_fl fraction bit 

d = zeros(iter,1); % direction vector 

%%%%%%%%%%%%%%%%%%%%% Pre - rotation before 

iteration%%%%%%%%%%%%%%%%%% 
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% if (I>0 && Q >0) || (I>0 && Q<0), no requirement to pre-rotate vector 

% if I<0 && Q>0, rotate 90 degree clockwise 

% if I<0 && Q<0 rotate 90 degree counterclockwise 

if (I>=0 && Q >=0) || (I>=0 && Q<0) 

    X(1) = I; 

    Y(1) = Q; 

    Z(1) = 0; 

elseif I<0 && Q>=0 

    X(1) = Q; 

    Y(1) = -I; 

    Z(1) = fi(90/phase_res,1,nbits+Z_fl,Z_fl); 

elseif I<0 && Q<0 

    X(1) = -Q; 

    Y(1) = I; 

    Z(1) = fi(-90/phase_res,1,nbits+Z_fl,Z_fl); 

end 

  

%%%%%%%%%%%%%%%%%%%% start of iteration 

%%%%%%%%%%%%%%%%%%%%%%% 

for i = 1:iter 

    if Y(i) < 0 

        d(i) = 1; 

        X(i+1) = X(i) - bitsra(Y(i), i-1); 

        Y(i+1) = Y(i) + bitsra(X(i), i-1); 

        Z(i+1) = Z(i) - angleLUT(i);         

    else 

        d(i) = -1; 

        X(i+1) = X(i) + bitsra(Y(i), i-1); 

        Y(i+1) = Y(i) - bitsra(X(i), i-1); 

        if(X(i+1)==0 && Y(i+1)==0) 

            Z(i+1)=0; 

        else     

            Z(i+1) = Z(i) + angleLUT(i); 

        end 

    end 

end 

  

%extract phase from the Z_array 

a = bin(Z(iter+1)); %output in binary (integer + fraction bit) 

b = a(length(a)-Z_fl+1); % 1st fraction bit (2^-1) 

s = a(1); 

c = a(2:length(a)-Z_fl); % phase output with only integer bit 

if(bin2dec(b)==1)  % if b is '1' round up c by 1 

    e = dec2bin(bin2dec(c)+ 1, length(c)); 

    if(bin2dec(e) == 32) 
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        e = dec2bin(0,length(c)); 

    end 

else 

    e = dec2bin(bin2dec(c), length(c)); 

end 

f = bin2dec(e); 

  

%extract magnitude from the X_array 

mag_a = bin(X(iter+1)); %output in binary (integer + fraction bit) 

mag_b = mag_a(length(mag_a)-frac_length+1); % 1st fraction bit (2^-1) 

mag_c = mag_a(1:length(mag_a)-frac_length); % mag output with only integer bit 

% if b is '1' round up c by 1 

if(bin2dec(mag_b)==1)  

    mag_e = dec2bin(bin2dec(mag_c)+ 1, length(mag_c)); 

else 

    mag_e = dec2bin(bin2dec(mag_c), length(mag_c)); 

end 

mag_f = bin2dec(mag_e); 

  

  

fprintf('****Phase output*****\n'); 

fprintf('atand(y/x): %.12f\n', phase_ideal); 

fprintf('Z output[before rounding]: %.12f (%s in binary) (%.12f degree)\n', (Z(iter+1)), a, 

(Z(iter+1))*phase_res); 

fprintf('phase error [before round]: %f\n', phase_ideal-((Z(iter+1))*phase_res)); 

fprintf('Z output [after rounding]: %d (%s in binary) (%.2f degree)\n', f, e, f*phase_res); 

if(y<0 && f==0) 

    fprintf('phase error [after rounding]: %f\n',phase_ideal-f*phase_res); 

elseif(y<0) 

    fprintf('phase error [after rounding]: %f\n',phase_ideal-(f*phase_res-360)); 

else 

    fprintf('phase error [after rounding]: %f\n',phase_ideal-f*phase_res); 

end 

fprintf('****Magnitude output*****\n'); 

fprintf('amplitude: %.12f\n', mag_ideal); 

fprintf('CORDIC magnitude output: %.12f (%s in binary)\n', X(iter+1), bin(X(iter+1))); 

fprintf('ratio: %f\n', double(X(iter+1))/mag_ideal); 

fprintf('CORDIC magnitude output after rounding: %d (%s in binary)\n', mag_f, mag_e); 

fprintf('ratio (after rounding): %f\n',mag_f/mag_ideal); 

  

figure (1) 

cmap = colormap(lines(iter+3)); 

plot([0 I],[0 Q],'LineWidth', 2, 'Color',cmap(1,:)) 

grid on 

legendInfo{1}=['Input Vector']; 
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hold on 

plot([0 X(1)],[0 Y(1)],'LineWidth', 2, 'Color',cmap(2,:)) 

legendInfo{2}=['After initial rotation']; 

for i=2:iter 

    plot([0 X(i)],[0 Y(i)],'LineWidth', 2, 'Color',cmap(i+1,:)); 

    legendInfo{i+1}=['After rotation ' num2str(i-1)]; 

    hold on 

end 

plot([0 X(i+1)],[0 Y(i+1)],'LineWidth', 2, 'Color',cmap(i+2,:)) 

legendInfo{i+2}=['After rotation ' num2str(i), ' (Last)']; 

yPos=0; 

plot(get(gca,'xlim'), [yPos yPos], '-.k', 'LineWidth', 2); 

legend(legendInfo) 

hold off 

xlabel('I') 

ylabel('Q') 

title('Vectoring Mode CORDIC Iterations') 

  

figure(2) 

if(x<0 && y<0) 

    plot(0:iter,Z(1:iter+1)*phase_res,'-dr','LineWidth', 2,'MarkerEdgeColor','k',... 

     'MarkerFaceColor',[.49 1 .63],... 

     'MarkerSize',10) 

else 

    plot(0:iter,Z(1:iter+1)*phase_res,'-dr','LineWidth', 2,'MarkerEdgeColor','k',... 

     'MarkerFaceColor',[.49 1 .63],... 

     'MarkerSize',10) 

end 

hold on 

yPos_angle=phase_ideal; 

plot(get(gca,'xlim'), [yPos_angle yPos_angle], '--.k', 'LineWidth', 2); 

legend('Calculated angle', 'Actual angle') 

%yPos_angle_1=phase_ideal-360; 

%plot(get(gca,'xlim'), [yPos_angle_1 yPos_angle_1], '-.b', 'LineWidth', 2); 

legend('Calculated angle', 'Actual angle')%, 'Actual angle-360 degree') 

hold off 

xlabel('Iteration') 

ylabel('Angle (degrees)') 

title('Cumulative Angle Through Iterations') 

  

A =[X, Y, Z, Z*phase_res,  abs(Z*phase_res-phase_ideal)] 

B = [-d.*angleLUT',(-d.*angleLUT')*phase_res] 
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C. FINDING THE MAXIMUM PHASE ERROR 

%this matlab code is used to find the maximum phase error and amplitude 

%error for a range of iteration, xin and yin value 

  

clear all 

clc 

  

format long 

phasebit = 5; % # of bits in phase output 

unit = 360/2^phasebit; %angle per bit 

  

%%%%%%%%%%%%%%% array for storing result 

%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

cordic_phase_error = zeros(5,10); % store phase output of CORDIC 

cordic_mag_error = zeros(2,10);   % store mag output of CORDIC 

max_phase_error_location = zeros(1,3); % store the I Q for maximum errors 

  

  

a = 1; 

for iter = 8:8 % number of iteration required for CORDIC 

    max_phase_error = 0; 

    min_mag_scalefactor = 0; 

    for i= -255:255     % range of I value 1-256 for 8 integer bits 

       for q=-255:255   % range of Q value 1-256 for 8 integer bits 

            ideal_angle=atan2d(q, i);   % ideal phase value 

            J(i+256,q+256) = ideal_angle; 

            mag_ideal=(sqrt(i^2 + q^2));  % ideal magnitude value 

            [mag_cordic, phase_cordic] =cordic(i,q,iter); % call CORDIC function 

            if(q<0 && phase_cordic==0) 

               phase_error = ideal_angle - (phase_cordic*unit); 

            elseif(q<0) 

               phase_error = ideal_angle - (phase_cordic*unit-360); 

            else 

               phase_error = ideal_angle - (phase_cordic*unit); 

            end 

            K(i+256,q+256) = phase_cordic*unit; 

            E(i+256,q+256) =  phase_error; 

             

            mag_error =  mag_cordic/mag_ideal; 

             

            % track the maximum error 

            if (abs(phase_error)-max_phase_error> 0) 

                max_phase_error = abs(phase_error); 

                max_phase_error_location = [iter, i, q]; 

            end 
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            % track the scale factor 

            if (abs(mag_error)-min_mag_scalefactor < 0) 

                min_mag_scalefactor = abs(mag_error); 

                max_mag_error_location = [iter, i, q]; 

            end 

        end 

    end 

    cordic_phase_error(1:5,a) = 

[iter,max_phase_error,log2(max_phase_error),max_phase_error_location(2),max_phase_

error_location(3)]; 

    cordic_mag_error(1,a) = iter; 

    cordic_mag_error(2,a) = mag_error; 

    cordic_mag_error(3, a) =max_phase_error_location(2); 

    cordic_mag_error(4, a) =max_phase_error_location(3); 

    a=a+1 

end 

  

% figure(2) 

% CordicS = surf(-255:255, -255:255, K) 

% set(CordicS,'LineStyle','none') 

% xlabel('I') 

% ylabel('Q') 

% title('Arctangent(Q/I)- 8-Iteration CORDIC using Floating Point Precision 

Calculation') 

  

figure(3) 

plot(reshape(J,[],1), reshape(abs(E), [],1), '.r', 'Linewidth', 0.1,'MarkerSize',0.1) 

hold on 

yPos=max(reshape(abs(E), [],1)); 

plot(get(gca,'xlim'), [yPos yPos], '-.k', 'LineWidth', 2); 

xlabel('angle (degree)') 

ylabel('error (degree)') 

title('Angle Error of the CORDIC Algorithm') 

legend('Error', 'Max Error') 

ylim([0, yPos+0.3]); 

  

function [mag, z] = cordic(x, y, iter) 

    %%%%%%%%%%%%%%%%%%% # of bits for Input 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    inputbit = 9; % word length, 1 sign bit the rest are integer bit 

  

    %%%%%%%%%%%%%%%%%%%%%%% phase output 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    phasebit = 5; % # of bits in phase output 

    Z_fl = 17; % # of fraction bit in phase 
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    frac_length = 18; 

    unit = 360/2^phasebit; %angle per bit 

    %%%%%%%%%%%%%%%%%%% input X Y 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    I = fi(x,1,inputbit,0);  % I signal 

    Q = fi(y,1,inputbit,0);   % Q signal 

        

    %%%%%%%%%%%%% Define X Y Array 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    %fra_length = 8; %default 8 

    X = fi(zeros(iter+1,1),1,inputbit+2+frac_length,frac_length); % X array is a 

9+frac_length+1(overflow) bit word with 1 sign bit, 9 integer bit and frac_length fraction 

bit 

    Y = fi(zeros(iter+1,1),1,inputbit+2+frac_length,frac_length); % Y array is a 

9+frac_length+1(overflow) bit word with 1 sign bit, 9 integer bit and frac_length fraction 

bit 

     

    %%%%%%%%%%%%% Define Z angle Array 

%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    %Z_fl = 1; %fraction length in phase output 

    Z = fi(zeros(iter+1,1),1,phasebit+Z_fl+1,Z_fl); % Z array is a 5+Z_fl bit word with 1 

sign bit, 4 integer bit and Z_fl fraction bit 

    angleLUT = fi(atand(2.^-(0:20))/unit,1,phasebit+Z_fl,Z_fl); % create angle LUT 

    %%%%%%%%%%%%%%%%%%%%% Pre - rotation before 

iteration%%%%%%%%%%%%%%%%%% 

    if (I>=0 && Q >=0) || (I>=0 && Q<0) 

    X(1) = I; 

    Y(1) = Q; 

    Z(1)= 0; 

    elseif I<0 && Q>=0 

    X(1) = Q; 

    Y(1) = -I; 

    Z(1) = fi(90/unit,1,phasebit+Z_fl,Z_fl); 

    elseif I<0 && Q<0 

    X(1) = -Q; 

    Y(1) = I; 

    Z(1) = fi(-90/unit,1,phasebit+Z_fl,Z_fl); 

    end 

     

    %%%%%%%%%%%%%%%%%%%% start of iteration 

%%%%%%%%%%%%%%%%%%%%%%% 

    for i = 1:iter 

        if Y(i) < 0 

            X(i+1) = X(i) - bitsra(Y(i), i-1); 

            Y(i+1) = Y(i) + bitsra(X(i), i-1); 
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            Z(i+1) = Z(i) - angleLUT(i);         

  

        else 

            X(i+1) = X(i) + bitsra(Y(i), i-1); 

            Y(i+1) = Y(i) - bitsra(X(i), i-1); 

            Z(i+1) = Z(i) + angleLUT(i); 

            if(X(i+1)==0 && Y(i+1)==0) 

                Z(i+1)=0; 

            else     

            Z(i+1) = Z(i) + angleLUT(i); 

            end         

        end 

    end 

     

    %extract phase from the Z_array 

     

    overflow =0; 

    b = bin(Z(iter+1)); %output in binary (integer + fraction bit) 

    c = b(length(b)-Z_fl+1); % 1st fraction bit (2^-1) 

    e = b(2:length(b)-Z_fl); % phase output with only integer bit 

    % if c is '1' round up e by 1 

    if(bin2dec(c)==1)  

        f = dec2bin(bin2dec(e)+ 1, length(e)); 

        if(bin2dec(f) == 32) 

            f = dec2bin(0,length(c)); 

        end 

    else 

        f = dec2bin(bin2dec(e), length(e)); 

    end 

    z = bin2dec(f); 

    %extract magnitude from the X_array 

    mag_a = bin(X(iter+1)); %output in binary (integer + fraction bit) 

    mag_b = mag_a(length(mag_a)-frac_length+1); % 1st fraction bit (2^-1) 

    mag_c = mag_a(1:length(mag_a)-frac_length); % mag output with only integer bit 

    % if b is '1' round up c by 1 

    if(bin2dec(mag_b)==1)  

        mag_e = dec2bin(bin2dec(mag_c)+ 1, length(mag_c)); 

    else 

        mag_e = dec2bin(bin2dec(mag_c), length(mag_c)); 

    end 

    mag = bin2dec(mag_e); 

end 
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D. SEA CLUTTER SIMULATION 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% MATLAB code for simulating sea clutter at different sea state, 

% polarization and headwind direction 

% Created by Owen Brooks and Modified by Dr. Sebastian Teich 

% Adapted by Ang, Pak Siang to fit context of airborne operation 

% Doppler resolution is determined by dp_pts 

% Doppler and fluctuating power are saved as NuC1_rgdop and P_RC1_rgdop and 

% exported to extract_para_shipv5.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%refresh 

clear  

close all 

clc 

set(0,'DefaultFigureWindowStyle','docked') %collects figures 

%set(0,'DefaultFigureWindowStyle','normal') %collects figures 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

filename=datestr(now,'yymmdd-HHMM-') 

  

%% Radar Inputs & Design Parameters 

c=3e8; %speed of light in m/2 

dR=0.3; %m 

dp_pts = 128; %number of pulse integration 

prf = 200; %prf in DIS was 200 

f_c = 10e9; %carrier frequency 10GHz 

lambda = c/f_c; %wavelength 

dF = 1/(dp_pts/prf); %doppler resolution = 1/T where T = Np/PRF Np = 128, PRF =200 

dV = dF*2/lambda; 

G_t=db2pow(32);      %assume 32dB 

G_r=db2pow(32);      %assume 32dB 

L=db2pow(3);        %total losses magnitude 

P=500; % in Watts 

B = 500e6; %bandwidth of chirp 

fs_IF = 2*B; 

ts=1/fs_IF; %sampling period 

R_unamb = c*0.9995/2/prf; %unambiguous range = c(1-d)/(2xPRF)=150km 

theta_el = 4.5 %+ 24.5; %elevation BW degrees 

theta_az = 1.05; %azimuthal BW degrees 

  

%Thermal Noise Level: 

k=1.38e-23; %boltzman's (J/K) 
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T=290; %rx temp (K) 

F=1; %noise factor, 1 is ideal 

pn=k*T*B*F; 

  

% Parameter inputs 

r_e=4/3*6371e3; 

hoe = 8000; % + 32000; % ht of aircraft in ft 

HOE=hoe*0.3048;%m 

range = 3000;% + 8000; %slant range m 

f_D=2*000/lambda; %doppler shift due to aircraft's motion assuming 0. how about 

100m/s? 

graz = asin((HOE/range)+(HOE^2/(2*r_e*range))-(range/(2*r_e))); 

graz_deg = rad2deg(graz); 

a_c_length = range * deg2rad(theta_el)*csc(graz); 

dR_h = dR*sec(graz); 

mainbeam_rb = a_c_length/dR_h; 

Rb = round(range/dR); 

range_h = range*cos(graz); 

Rb_min =Rb - floor((range_h - HOE/tan(graz+deg2rad(theta_el/2)))/dR_h); 

Rb_max =round(mainbeam_rb)+Rb_min; 

%rb_cmin =Rb - floor((range_h - HOE/tan(graz+deg2rad(theta_el/2)))/dR_h); 

%rb_cmax =round(mainbeam_rb)+Rb_min; 

%16 - for 32 range bin target 

rb_cmin = floor(Rb - 256);  

rb_cmax = round(Rb + 256); 

  

  

SS=5; % seastate  

Pol=2; % polarization V = 1 H = 2 

ThWind=60; % headwind direction in angle 

  

u=3.16*SS^0.8; %wind velocity m/s 

  

if Pol==1 

    Pol='V'; 

    K=0.18; 

elseif Pol==2 

    Pol='H'; 

    K=0.25; 

end 

  

%clutter inputs for each range bin occupied by false target: 

Psi_c=zeros(1,rb_cmax - rb_cmin); 

A_c=zeros(1,rb_cmax - rb_cmin); 

sigma_0_c=zeros(1,rb_cmax - rb_cmin); 
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Psi_mainbeam=zeros(1,Rb_max - Rb_min); 

A_mainbeam=zeros(1,Rb_max - Rb_min); 

sigma_0_mainbeam=zeros(1,Rb_max - Rb_min); 

  

%for the entire mainbeam 

for i0=1:(Rb_max-Rb_min) 

     

    %grazing angle, lower limit is zero 

    Psi_mainbeam(i0)=asind(HOE/((i0+Rb_min)*dR)+HOE^2/(2*r_e*(i0+Rb_min)*dR)-

((i0+Rb_min)*dR)/(2*r_e)); %IEE 

        if Psi_mainbeam(i0)<0 

        Psi_mainbeam(i0)=0;  

    end 

  

    A_mainbeam(i0)=deg2rad(theta_az)*(dR*((i0+Rb_min)-

0.5))*dR*sec(deg2rad(Psi_mainbeam(i0))); %Nathanson 

    

sigma_0_mainbeam(i0)=db2mag(NRL_SigmaSea(f_c/1e9,SS,Pol,Psi_mainbeam(i0),Th

Wind)); modelstring='NRL';      

end 

  

% for the 32 rangebins where the false target is expected to occupy 

for i0=1:(rb_cmax-rb_cmin) 

     

    %grazing angle, lower limit is zero 

    Psi_c(i0)=asind(HOE/((i0+rb_cmin)*dR)+HOE^2/(2*r_e*(i0+rb_cmin)*dR)-

((i0+rb_cmin)*dR)/(2*r_e)); %IEE 

        if Psi_c(i0)<0 

        Psi_c(i0)=0;  

    end 

  

    A_c(i0)=deg2rad(theta_az)*(dR*((i0+rb_cmin)-0.5))*dR*sec(deg2rad(Psi_c(i0))); 

%Nathanson 

     

    % Sea Clutter RCS using NRL model 

    sigma_0_c(i0)=db2mag(NRL_SigmaSea(f_c/1e9,SS,Pol,Psi_c(i0),ThWind)); 

modelstring='NRL';      

  

end 

  

%avg clutter power for entire mainbeam: 

P_RC_0_mainbeam=zeros(1, Rb_max-Rb_min); 

for i0=1:Rb_max-Rb_min %clutter in affected cells (within elevation beam) 

     

    if SS==8; %Special case for NO clutter 
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        break 

    end 

     

    %empirical envelope expected from clutter within mainbeam 

    

P_RC_0_mainbeam(i0)=P*G_t*G_r*lambda^2*sigma_0_mainbeam(i0)*A_mainbeam(i

0)/... 

        ((4*pi)^3*(((i0+Rb_min)*dR)^4)*L); %friis 

end 

    

%avg clutter power for 32 range bins at the center where the target is placed: 

P_RC_0=zeros(1, rb_cmax-rb_cmin); 

for i0=1:rb_cmax-rb_cmin %clutter in affected cells (within elevation beam) 

     

    if SS==8; %Special case for NO clutter 

        break 

    end 

     

    %empirical envelope expected from RCS_0 

    P_RC_0(i0)=P*G_t*G_r*lambda^2*sigma_0_c(i0)*A_c(i0)/... 

        ((4*pi)^3*(((i0+rb_cmin)*dR)^4)*L); %friis 

end 

  

  

Nbar=0.01; %spike probability - varies w/ texture 

step1=(5-2)/90; %ratio of spike power 

step2=(40-2)/89; 

rho(1:91)=fliplr(2:step1:5); 

rho(92:181)=(2:step2:40); 

%clutter doppler constants 

Beta=2/lambda*(0.25+K*u)/11; Alpha=2/lambda*(0.25+K*u)-Beta; %10*Beta 

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%random clutter in main beam 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Texture_main=zeros(1,Rb_max-Rb_min); 

spike_main=zeros(1,Rb_max-Rb_min); 

n_spike_main=find(round((0.5/(1-Nbar))*rand(1,find(P_RC_0_mainbeam,1,'last')))); 

spike_main(n_spike_main)=1; 

  

mew_main=zeros(1,Rb_max-Rb_min); 

sig1_main=abs(normrnd(0.2*u*cosd(ThWind)/lambda,20,1,Rb_max-Rb_min)); 
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%fluctuations in main beam 

for i0=1:Rb_max-Rb_min %vary the texture (slow moving) by range bin 

    

Texture_main(i0)=KdistributionTexture(Psi_mainbeam(i0),A_mainbeam(i0),Pol,ThWind

,P_RC_0_mainbeam(i0)); 

    

mew_main(i0)=(Alpha+Beta*Texture_main(i0)/P_RC_0_mainbeam(i0))*cosd(ThWind)

+f_D; 

end 

  

fdl_main=find(Texture_main,1); 

fdr_main=find(Texture_main,1,'last'); 

sig3_1_main=ceil(3*max(sig1_main')/dF); 

maxsig1_main=2*ceil(3*max(sig1_main')/dF)+1; 

NuC1_main=zeros(Rb_max-Rb_min,max(maxsig1_main)); 

  

for i0=fdl_main:fdr_main 

        NuC1_main(i0,1:maxsig1_main)=[(round(mew_main(i0)/dF)-

sig3_1_main(1))*dF:dF:(round(mew_main(i0)/dF)+sig3_1_main(1))*dF]; 

end 

     

P_RCi1_main=zeros(1,Rb_max-Rb_min); 

  

  

for i0=fdl_main:fdr_main 

    if spike_main(i0)==1 

        

P_RCi1_main(i0)=exprnd((1+spike_main(i0)*rho(1+abs(wrapTo180(ThWind))))*Textur

e_main(i0))*Nbar+...%n=1 

                    exprnd(Texture_main(i0))*(1-Nbar);%n=0 

    else 

        P_RCi1_main(i0)=exprnd(Texture_main(i0))*(1-Nbar);%n=0 

    end  

end 

  

P_RC1_main=zeros(Rb_max-Rb_min,max(maxsig1_main)); 

  

for i0=fdl_main:fdr_main 

      for id=1:maxsig1_main(1) 

        P_RC1_main(i0,id)=P_RCi1_main(i0)*dF/sig1_main(i0)/sqrt(2*pi)*exp(-

0.5*((NuC1_main(i0,id)-mew_main(i0))/sig1_main(i0))^2); 

      end  

end 
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% random value around normal distribution 

P_RC1_main=normrnd(P_RC1_main,P_RC1_main/20); 

  

figure(1001); 

plot(((1:Rb_max-Rb_min)+Rb_min)*dR,pow2db(P_RCi1_main),'b+');hold on; 

plot(((1:Rb_max-

Rb_min)+Rb_min)*dR,pow2db(P_RC_0_mainbeam),'Linewidth',3,'Color','r'); 

title(['Return power from the clutter within radar mainbeam for SS = ',num2str(SS),', 

wind angle = ',num2str(ThWind),'deg, ',modelstring,' model, ', 'Grazing angle =', 

num2str(graz_deg), ' deg']); 

legend('KA Distributed','Mean Power') 

xlabel('Range (m)') 

ylabel('Power (dBW)') 

  

figure(1002); 

subplot(211) 

plot(((1:Rb_max-Rb_min)+Rb_min)*dR,pow2db(P_RCi1_main),'b+');hold on; 

%plot(((1:Rb_max-Rb_min)+Rb_min)*dR,pow2db(P_RC1_main(:,1)'),'b+');hold on; 

plot(((1:Rb_max-

Rb_min)+Rb_min)*dR,pow2db(P_RC_0_mainbeam),'Linewidth',3,'Color','r'); 

xlabel('Range (m)') 

ylabel('Power (dBW)') 

title(['clutter profile for SS = ',num2str(SS),', wind angle = ',num2str(ThWind),'deg, 

',modelstring,' model, ', 'Grazing angle =', num2str(graz_deg), ' deg']); 

hold off 

  

subplot(212) 

plot(((1:Rb_max-Rb_min)+Rb_min)*dR,NuC1_main(:,1),'b+'),hold on 

plot(((1:Rb_max-Rb_min)+Rb_min)*dR,mew_main(1,:),'Linewidth',3,'Color','r') 

grid on, xlabel('Range [m]'),ylabel('Doppler [Hz]') 

title(['clutter & target(s) doppler for SS = ',num2str(SS),', wind angle = 

',num2str(ThWind),'deg, ',modelstring,' model, ', 'Grazing angle =', num2str(graz_deg), ' 

deg']); 

hold off 

  

RgDop_clutter_mainbeam = figure(1003); RgDop_clutter_mainbeam.Name='Range 

Dopper - main beam'; Clutter.NumberTitle='off';%name figure in the window 

figure(1003); 

surf(NuC1_main, 1:Rb_max-Rb_min, (P_RC1_main), 'edgecolor', 'none'); 

xlabel('Doppler (Hz)'),ylabel('Range Bin'),zlabel('Power (W)') 

title(['Range Doppler Distribution of Sea Clutter within the main beam for SS = 

',num2str(SS),', wind angle = ',num2str(ThWind),'deg, ',modelstring,' model, ', 'Grazing 

angle =', num2str(graz_deg), ' deg']); 

colorbar 

%colormap(flipud(colormap)) 
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figure(1004); 

mesh(NuC1_main, 1:Rb_max-Rb_min, P_RC1_main, gradient(NuC1_main)); 

xlabel('Doppler (Hz)'),ylabel('Range Bin'),zlabel('Power (W)') 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%random clutter in rangebin occupied by target: 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Texture=zeros(1,rb_cmax-rb_cmin); 

spike=zeros(1,rb_cmax-rb_cmin); 

n_spike=find(round((0.5/(1-Nbar))*rand(1,find(P_RC_0,1,'last')))); 

spike(n_spike)=1; 

  

mew=zeros(1,rb_cmax-rb_cmin); 

sig1=abs(normrnd(0.2*u*cosd(ThWind)/lambda,20,1,rb_cmax-rb_cmin)); 

  

%fluctuations in rangebin occupied by target 

for i0=1:rb_cmax-rb_cmin %vary the texture (slow moving) by range bin 

    Texture(i0)=KdistributionTexture(Psi_c(i0),A_c(i0),Pol,ThWind,P_RC_0(i0)); 

    mew(i0)=(Alpha+Beta*Texture(i0)/P_RC_0(i0))*cosd(ThWind)+f_D; 

end 

  

fdl=find(Texture,1); 

fdr=find(Texture,1,'last'); 

sig3_1=ceil(3*max(sig1')/dF); 

maxsig1=2*ceil(3*max(sig1')/dF)+1; 

NuC1=zeros(rb_cmax-rb_cmin,max(maxsig1)); 

  

for i0=fdl:fdr 

        NuC1(i0,1:maxsig1)=[(round(mew(i0)/dF)-

sig3_1(1))*dF:dF:(round(mew(i0)/dF)+sig3_1(1))*dF]; 

end 

     

P_RCi1=zeros(1,rb_cmax-rb_cmin); 

  

  

for i0=fdl:fdr 

    if spike(i0)==1 

        

P_RCi1(i0)=exprnd((1+spike(i0)*rho(1+abs(wrapTo180(ThWind))))*Texture(i0))*Nbar

+...%n=1 

                    exprnd(Texture(i0))*(1-Nbar);%n=0 

    else 
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        P_RCi1(i0)=exprnd(Texture(i0))*(1-Nbar);%n=0 

    end  

end 

  

P_RC1=zeros(rb_cmax-rb_cmin,max(maxsig1)); 

  

for i0=fdl:fdr 

      for id=1:maxsig1(1) 

        P_RC1(i0,id)=P_RCi1(i0)*dF/sig1(i0)/sqrt(2*pi)*exp(-0.5*((NuC1(i0,id)-

mew(i0))/sig1(i0))^2); 

      end  

end 

  

% random value around normal distribution 

P_RC1=normrnd(P_RC1,P_RC1/20); 

  

%find the 512 center components of the doppler spectrum 

% freq=zeros(1,512); 

% for i0=1:(rb_cmax-rb_cmin) 

%     [row, col] = find(abs(NuC1(i0,:)- mew(i0))< dF/2); %locate the indice where the 

mean frequency is at 

%     freq(i0) = (col); 

%     NuC1_rgdop_512(i0, :) = NuC1(i0, freq(i0)-(512/2)+1:freq(i0)+512/2); 

%     P_RC1_rgdop_512(i0,:) = P_RC1(i0, freq(i0)-(512/2)+1:freq(i0)+512/2); 

% end 

%find the 64 center components of the doppler spectrum 

freq=zeros(1,64); 

for i0=1:(rb_cmax-rb_cmin) 

    [row, col] = find(abs(NuC1(i0,:)- mew(i0))< dF/2); %locate the indice where the mean 

frequency is at 

    freq(i0) = (col); 

    NuC1_rgdop_64(i0, :) = NuC1(i0, freq(i0)-(64/2)+1:freq(i0)+64/2); 

    P_RC1_rgdop_64(i0,:) = P_RC1(i0, freq(i0)-(64/2)+1:freq(i0)+64/2); 

end 

%find the 128 center components of the doppler spectrum 

freq=zeros(1,128); 

for i0=1:(rb_cmax-rb_cmin) 

    [row, col] = find(abs(NuC1(i0,:)- mew(i0))< dF/2); %locate the indice where the mean 

frequency is at 

    freq(i0) = (col); 

    NuC1_rgdop_128(i0, :) = NuC1(i0, freq(i0)-(128/2)+1:freq(i0)+128/2); 

    P_RC1_rgdop_128(i0,:) = P_RC1(i0, freq(i0)-(128/2)+1:freq(i0)+128/2); 

end 

%find the 256 center components of the doppler spectrum 

freq=zeros(1,256); 
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for i0=1:(rb_cmax-rb_cmin) 

    [row, col] = find(abs(NuC1(i0,:)- mew(i0))< dF/2); %locate the indice where the mean 

frequency is at 

    freq(i0) = (col); 

    NuC1_rgdop_256(i0, :) = NuC1(i0, freq(i0)-(256/2)+1:freq(i0)+256/2); 

    P_RC1_rgdop_256(i0,:) = P_RC1(i0, freq(i0)-(256/2)+1:freq(i0)+256/2); 

end 

  

  

%plot the clutter, noise power samples at the rangebin where the target 

%reside 

Clutter=figure(4);Clutter.Name='Clutter Samples at the Range Bins where the Target 

Reside';Clutter.NumberTitle='off';%name figure in the window 

set(gcf, 'PaperPosition', [0 0 12.3333 8.5833]) 

subplot(211) 

plot(((1:rb_cmax-rb_cmin)+rb_cmin)*dR,pow2db(P_RC_0),'Linewidth',3,'Color','r'); 

hold on 

plot(((1:rb_cmax-rb_cmin)+rb_cmin)*dR,pow2db(P_RCi1),'b+'), hold on 

plot(((1:rb_cmax-rb_cmin)+rb_cmin)*dR,pow2db(pn)*ones(1,rb_cmax-rb_cmin),'k-

.','Linewidth',3); 

grid on, xlabel('Range [m]'),ylabel('Power [dBW]') 

%axis([0,100*dR,min(min(pow2db(P_RC))),max(max(pow2db(P_RC)))]) 

title(['clutter & noise profile for SS = ',num2str(SS),', wind angle = 

',num2str(ThWind),'deg, ',modelstring,' model, ', 'Grazing angle =', num2str(graz_deg), ' 

deg']); 

hold off 

  

%plot 2D clutter sample spectrum at the range bin where the target reside 

subplot(212) 

plot(((1:rb_cmax-rb_cmin)+rb_cmin)*dR,NuC1(:,:),'b+'),hold on 

plot(((1:rb_cmax-rb_cmin)+rb_cmin)*dR,mew(1,:),'Linewidth',3,'Color','r') 

grid on, xlabel('Range [m]'),ylabel('Doppler [Hz]') 

title(['clutter & target(s) doppler for SS = ',num2str(SS),', wind angle = 

',num2str(ThWind),'deg, ',modelstring,' model, ', 'Grazing angle =', num2str(graz_deg), ' 

deg']); 

print(Clutter,['ClutterScatter, SS=',num2str(SS),', Pol=',Pol,', Th=',num2str(ThWind),', 

Mod=',modelstring],'-dpng','-r300'); 

hold off 

  

RgDop_clutter = figure(1005); RgDop_clutter.Name='Range Doppler 32 Rangebin'; 

Clutter.NumberTitle='off';%name figure in the window 

surf(NuC1, 1:rb_cmax-rb_cmin, P_RC1, 'edgecolor', 'none'); 

xlabel('Doppler (Hz)'),ylabel('Range Bin'),zlabel('Power (W)') 
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title(['Range Doppler Distribution of Sea Clutter at Target for SS = ',num2str(SS),', wind 

angle = ',num2str(ThWind),'deg, ',modelstring,' model, ', 'Grazing angle =', 

num2str(graz_deg), ' deg']); 

colorbar 

%colormap(flipud(colormap)) 

 

E. NORMALIZED RCS  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Generate Graph for Normalised RCS/RCS/Received Power vs Range/SS 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%refresh 

clear  

close all 

clc 

set(0,'DefaultFigureWindowStyle','docked') %collects figures 

%set(0,'DefaultFigureWindowStyle','normal') %collects figures 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

filename=datestr(now,'yymmdd-HHMM-') 

  

%% Radar Inputs & Design Parameters 

c=3e8; %speed of light in m/2 

dR=0.3; %m 

dp_pts = 128; %number of doppler 

prf = 200; %prf in DIS was 200 

f_c = 10e9; %carrier frequency 10GHz 

lambda = c/f_c; %wavelength 

dF = 1/(dp_pts/prf); %doppler resolution = 1/T where T = Np/PRF Np = 128, PRF =200 

dV = dF*2/lambda; 

G_t=db2pow(32);      %assume 32dB 

G_r=db2pow(32);      %assume 32dB 

L=db2pow(3);        %total losses magnitude 

P=500; % in Watts 

B = 500e6; %bandwidth of chirp 

fs_IF = 2*B; 

ts=1/fs_IF; %sampling period 

R_unamb = c*0.9995/2/prf; %unambiguous range = c(1-d)/(2xPRF)=150km 

theta_el = 4.5 +24.5  ; %elevation BW degrees 

theta_az = 1.05; %azimuthal BW degrees 

  

%Thermal Noise Level: 
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k=1.38e-23; %boltzman's (J/K) 

T=290; %rx temp (K) 

F=1; %noise factor, 1 is ideal 

pn=k*T*B*F; 

  

% Parameter inputs 

r_e=4/3*6371e3; 

hoe = 5000 + 32000; % ht of aircraft in ft 

HOE=hoe*0.3048;%m 

range = 5000 + 12000; %slant range m 

f_D=2*000/lambda; %doppler shift due to aircraft's motion assuming 0. how about 

100m/s? 

graz = asin((HOE/range)+(HOE^2/(2*r_e*range))-(range/(2*r_e))); 

graz_deg = rad2deg(graz); 

a_c_length = range * deg2rad(theta_el)*csc(graz); 

dR_h = dR*sec(graz); 

mainbeam_rb = a_c_length/dR_h; 

Rb = round(range/dR); 

range_h = range*cos(graz); 

Rb_min =Rb - floor((range_h - HOE/tan(graz+deg2rad(theta_el/2)))/dR_h); 

Rb_max =round(mainbeam_rb)+Rb_min; 

sigma_0_mainbeam=zeros(6,Rb_max - Rb_min); 

P_RC_0_mainbeam=zeros(6, Rb_max-Rb_min); 

for SS=2:7; %sea state 

    Pol=2; % polarization V = 1 H = 2 

    ThWind=30; % headwind direction in angle 

    u=3.16*SS^0.8; %wind velocity m/s 

  

    if Pol==1 

       Pol='V'; 

       K=0.18; 

    elseif Pol==2 

       Pol='H'; 

       K=0.25; 

    end 

  

        %clutter inputs for each range bin occupied by false target: 

            Psi_mainbeam=zeros(1,Rb_max - Rb_min); 

            A_mainbeam=zeros(1,Rb_max - Rb_min); 

             

        % for the entire mainbeam 

        for i0=1:(Rb_max-Rb_min) 

  

            %grazing angle, lower limit is zero 
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Psi_mainbeam(i0)=asind(HOE/((i0+Rb_min)*dR)+HOE^2/(2*r_e*(i0+Rb_min)*dR)-

((i0+Rb_min)*dR)/(2*r_e)); %IEE 

                if Psi_mainbeam(i0)<0 

                Psi_mainbeam(i0)=0;  

                end 

  

            A_mainbeam(i0)=deg2rad(theta_az)*(dR*((i0+Rb_min)-

0.5))*dR*sec(deg2rad(Psi_mainbeam(i0))); %Nathanson 

            main(i0)= deg2rad(theta_az)*(dR*((i0+Rb_min)-0.5)); 

            sigma_0_mainbeam(SS-

1,i0)=db2mag(NRL_SigmaSea(f_c/1e9,SS,Pol,Psi_mainbeam(i0),ThWind)); 

modelstring='NRL';      

        end 

  

        % avg clutter power for entire mainbeam: 

        for i0=1:Rb_max-Rb_min %clutter in affected cells (within elevation beam) 

  

            if SS==8; %Special case for NO clutter 

                break 

            end 

            %empirical envelope expected from clutter within mainbeam 

            P_RC_0_mainbeam(SS-1,i0)=P*G_t*G_r*lambda^2*sigma_0_mainbeam(SS-

1,i0)*A_mainbeam(i0)/... 

                ((4*pi)^3*(((i0+Rb_min)*dR)^4)*L); %friis 

        end 

  

end 

  

figure(1)         

r = Rb_min*dR:dR:(Rb_max-1)*dR; 

plot(r, pow2db(P_RC_0_mainbeam(1,:)))         

ylabel('Received Power (dBW)')   

xlabel('Range (m)') 

grid on 

  

figure(2) 

plot(r, Psi_mainbeam(1,:)) 

ylabel('Grazing Angle(Degree)') 

xlabel('Range (m)') 

title(['Grazing Angle (Degree) vs Range']); 

grid on 

  

figure(3) 

%plot(r, pow2db(A_mainbeam(1,:).*sigma_0_mainbeam(1,:))) 
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hold on 

plot(r, pow2db(sigma_0_mainbeam(1,:))) 

%plot(r, pow2db(dR*sec(deg2rad(Psi_mainbeam(1, :))))) 

yyaxis right 

ylabel('RCS(dbsm)') 

%ylabel('Ac(dbsm)') 

yyaxis left 

ylabel ('Normalised RCS dbSM') 

legend('RCS', 'normalized RCS') 

hold off 

  

xlabel('Range (m)') 

title(['Area of Illuminated Patch vs Range']); 

grid on 

hold off 

  

figure(4) 

plot(r, pow2db(sigma_0_mainbeam(1,:))) 

ylabel('Normalized RCS (dBsm)') 

xlabel('Range (m)') 

title(['Normalised RCS vs Range']); 

grid on 

  

figure(5) 

plot(r, pow2db(A_mainbeam(1,:).*sigma_0_mainbeam(1,:))) 

ylabel('RCS (dbsm)') 

xlabel('Range (m)') 

title(['RCS vs Range']); 

grid on 

  

figure(6) 

for i0=1:6 

    plot(r, pow2db(sigma_0_mainbeam(i0,:))) 

    hold on 

end 

ylabel('Normalized RCS (dbsm)')   

xlabel('Range (m)') 

grid on 

legend('SS=2','SS=3','SS=4','SS=5','SS=6','SS=7'); 

  

figure(7) 

for i0=1:6 

    plot(r, pow2db(P_RC_0_mainbeam(i0,:))) 

    hold on 

end 
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ylabel('Received Power (dBW)')   

xlabel('Range (m)') 

grid on 

legend('SS=2','SS=3','SS=4','SS=5','SS=6','SS=7'); 

  



 105 

APPENDIX B.  VERILOG CODES 

A. CORDIC PROCESSOR 

`timescale 1 ns/100 ps 

 

//**********************************************************************

******************************** 

//    Verilog code for CORDIC in vectoring mode.   

//    Input a complex vector and output is amplitude and phase 

//    Output phase is quantized to 5 bits. 0 deg = 5'd0, 11.25 deg = 5'd1  

//    Size of Xout, Yout is 2 bit larger due to a system gain of 1.647 and overflow. 

// 

//    Modified by Ang, Pak Siang Jun 9 2017 based on previous version from by Kirk 

Weedman, KD7IRS, kirk@hdlexpress.com 

//**********************************************************************

*********************************   

 

module CORDIC (clock, Xin, Yin, Iout, Zout); 

    

   parameter XY_SZ = 9;    // width of input and output data, 1 sign bit, rest are integer bit  

   parameter phasebit = 5; // width of phase out data, 1 sign bit, rest are integer bit 

   parameter iter = 18;    // number of iteration in CORDIC 

   parameter mag_fb = 18;   // # of fraction bit introduced for X & Y array 

   parameter phase_fb = 17; // # of fraction bit introduced for phase array 

    

   input                      clock; 

   input  signed  [XY_SZ-1:0]    Xin;     // # of bit for Xin is XY_SZ 

   input  signed  [XY_SZ-1:0]    Yin;     // # of bit for Yin is XY_SZ 

   output         [XY_SZ:0]      Iout;    // # of bit for Iout is XY_SZ+1 which cater for 

overflow 

   output         [phasebit-1:0] Zout;    // # of bit for Zout is phasebit 

 

   //------------------------------------------------------------------------------ 

   //                             arctan table 

   //------------------------------------------------------------------------------ 

    

   // Note: The atan_table was chosen to be 12 bits wide giving resolution up to atan(2^-

11) 

   wire signed [phasebit+phase_fb-1:0] atan_table [0:18]; 

   // upper 1 bit = sign bit 

   // 12'b010000000000 = 90 degrees 

   // 12'b110000000000 = -90 degrees 

   // upper 2 bits = 2'b00 which represents 0 - PI/2 range 
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   // upper 2 bits = 2'b01 which represents PI/2 to PI range 

   // upper 2 bits = 2'b10 which represents PI to 3*PI/2 range (i.e. -PI/2 to -PI) 

   // upper 2 bits = 2'b11 which represents 3*PI/2 to 2*PI range (i.e. 0 to -PI/2) 

   // The upper 2 bits therefore tell us which quadrant we are in. 

   assign atan_table[00] = 22'b0010000000000000000000; // 45.000 degrees -> atan(2^0) 

   assign atan_table[01] = 22'b0001001011100100000001; // 26.565 degrees -> atan(2^-1) 

   assign atan_table[02] = 22'b0000100111111011001110; // 14.036 degrees -> atan(2^-2) 

   assign atan_table[03] = 22'b0000010100010001000100; // 7.12506 degrees -> atan(2^-

3) 

   assign atan_table[04] = 22'b0000001010001011000011; // 3.576334 degrees -> 

atan(2^-4) 

   assign atan_table[05] = 22'b0000000101000101110110; // 1.789911 degrees -> 

atan(2^-5) 

   assign atan_table[06] = 22'b0000000010100010111110; // atan(2^-6) 

   assign atan_table[07] = 22'b0000000001010001011111; // atan(2^-7) 

   assign atan_table[08] = 22'b0000000000101000110000; // atan(2^-8) 

   assign atan_table[09] = 22'b0000000000010100011000; // atan(2^-9) 

   assign atan_table[10] = 22'b0000000000001010001100; // atan(2^-10) 

   assign atan_table[11] = 22'b0000000000000101000110; // atan(2^-11) 

   assign atan_table[12] = 22'b0000000000000010100011; // atan(2^-12) 

   assign atan_table[13] = 22'b0000000000000001010001; // atan(2^-13) 

   assign atan_table[14] = 22'b0000000000000000101001; // atan(2^-14) 

   assign atan_table[15] = 22'b0000000000000000010100; // atan(2^-15) 

   assign atan_table[16] = 22'b0000000000000000001010; // atan(2^-16) 

   assign atan_table[17] = 22'b0000000000000000000101; // atan(2^-17) 

   assign atan_table[18] = 22'b0000000000000000000011; // atan(2^-18) 

 

    

   //------------------------------------------------------------------------------ 

   //                              registers 

   //------------------------------------------------------------------------------ 

    

   //stage outputs 

   reg signed [XY_SZ+1+mag_fb:0] X [0:iter+1];  

   reg signed [XY_SZ+1+mag_fb:0] Y [0:iter];  

   reg signed    [phasebit+phase_fb:0] Z [0:iter+1]; //  

    

   //------------------------------------------------------------------------------ 

   //                               stage 0 

   //------------------------------------------------------------------------------ 

   wire                 [1:0] quadrant; 

   assign   quadrant [1]= Xin[XY_SZ-1]; // = 1 if 1 is negative 

   assign   quadrant [0]= Yin[XY_SZ-1];  

 

   always @(posedge clock) 



 107 

   begin // make sure the rotation angle is in the -pi/2 to pi/2 range.  If not then pre-rotate 

      case (quadrant) 

         2'b00, 

         2'b01:   // no pre-rotation needed for these quadrants 

         begin    //  

            X[0] <= Xin <<< mag_fb; 

            Y[0] <= Yin <<< mag_fb; 

            Z[0] <= 0;  //no need for any correction since vector is in the correct quadrant 

         end 

          

         2'b10:      //y>0, d=1 

         begin 

            X[0] <= Yin <<< mag_fb; 

            Y[0] <= -Xin <<< mag_fb; 

            Z[0] <= 22'b0100000000000000000000; // add pi/2 from angle for this quadrant 

         end 

          

         2'b11: 

         begin 

            X[0] <= -Yin <<< mag_fb; 

            Y[0] <= Xin <<< mag_fb; 

            Z[0] <= 22'b1100000000000000000000; // subtract pi/2 to angle for this quadrant 

         end 

          

      endcase 

   end 

    

   //------------------------------------------------------------------------------ 

   //                           generate stages 1 to iter 

   //------------------------------------------------------------------------------ 

   genvar i; 

 

   generate 

   for (i=0; i < iter; i=i+1) 

   begin: XYZ 

      wire                   Y_sign; 

      wire signed  [XY_SZ+mag_fb:0] X_shr, Y_shr;  

       

      assign X_shr = X[i] >>> i; // signed shift right 

      assign Y_shr = Y[i] >>> i; 

    

      //the sign of the current rotation angle 

      assign Y_sign = Y[i][XY_SZ+mag_fb+1]; // Y_sign = 1 if Y[i] < 0 

    

      always @(posedge clock) 
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      begin 

         // add/subtract shifted data 

         X[i+1] <= Y_sign ? X[i] - Y_shr         : X[i] + Y_shr; 

         Y[i+1] <= Y_sign ? Y[i] + X_shr         : Y[i] - X_shr; 

         Z[i+1] <= Y_sign ? Z[i] - atan_table[i] : Z[i] + atan_table[i]; 

  end 

   end 

   endgenerate 

    

   //----------------------------------------------------------------------------------- 

   //   Rounding for Z array: if the 1st fraction bit is '1', round up Z[iter] by 1 

   //----------------------------------------------------------------------------------- 

   wire     MS_FB; 

   assign   MS_FB = Z[iter][phase_fb-1]; // extract the most significant fraction bit 

 

   always @(Z[iter]) 

   begin //  

      case (MS_FB) 

         1'b0 :  

  begin 

     Z[iter+1] <= Z[iter][phasebit+phase_fb-1:phase_fb]; 

  end 

         1'b1:     

         begin    

            Z[iter+1] <= Z[iter][phasebit+phase_fb-1:phase_fb]+1; 

         end 

       endcase 

   end 

    

   //------------------------------------------------------------------------------ 

   //  Rounding for X array: if the 1st fraction bit is '1', round up X[iter] by 1 

   //------------------------------------------------------------------------------ 

   wire     MS_FBx; 

   assign   MS_FBx = X[iter][mag_fb-1]; // extract the most signicant fraction bit 

  

 

   always @(X[iter])  

   begin //  

      case (MS_FBx) 

         1'b0 :  

  begin 

     X[iter+1] <= X[iter] >>> mag_fb; 

  end 

         1'b1:    

         begin    
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            X[iter+1] <= (X[iter] >>> mag_fb)+1; 

         end 

       endcase 

   end 

    

   //------------------------------------------------------------------------------ 

   //    Check for Special Case : Xin = 0 Yin = 0 which will make PhaseOutput = 0 

   //------------------------------------------------------------------------------ 

 

   always @(X[iter]) 

   begin 

      if(X[iter] == 29'b00000000000000000000000000000) 

  Z[iter+1] <= 5'b00000; 

   end 

 

   //------------------------------------------------------------------------------ 

   //                                 output 

   //------------------------------------------------------------------------------ 

   assign Iout = X[iter+1]; 

   assign Zout = Z[iter+1]; 

 

endmodule 

 

 

B. TESTBENCH FILE 

 

`timescale 1 ns/100 ps 

 

module cordic_test; 

 

localparam  SZ = 9; // bits of accuracy 

 

reg signed [SZ-1:0] Xin, Yin; 

wire  [4:0] Zout; 

wire signed [SZ:0] Iout; 

reg         clk; 

reg signed [9:0] countx = 0; 

reg signed [9:0] county = 0; 

// 

 

reg signed [63:0] i; 

reg      start; 

 

initial 
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begin: run 

    

   $write("Starting sim"); 

 

   Xin =  -'d45;    //14'b00000000000000;                        

   Yin = 'd23;     //14'b00000000000000;   

   #20; 

   Xin = -'d45;    //14'b00000000000000;                        

   Yin = -'d23;     //14'b00000000000000;   

   #20 

   Xin =  -'d230;    //14'b00000000000000;                        

   Yin =  'd1;     //14'b00000000000000;   

 

 

   //#400; 

  // Xin = -'d45;                       

  // Yin = 'd23;  

           

 

/* 

// test for quandrant 1 

   for (countx = 0; countx < 256; countx = countx + 1) 

        begin 

 for (county = 0; county < 256; county = county + 1) 

          begin 

   #20; 

   Xin = countx; 

          Yin = county; 

          end 

        end 

*/ 

/* 

// test for quandrant 2 

   for (countx = -255; countx < 1; countx = countx + 1) 

        begin 

 for (county = 0; county < 256; county = county + 1) 

          begin 

   #20; 

   Xin = countx; 

          Yin = county; 

          end 

        end 

*/ 

/* 

// test for quandrant 3 
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   for (countx = -255; countx < 1; countx = countx + 1) 

        begin 

 for (county = -255; county < 1; county = county + 1) 

          begin 

   #20; 

   Xin = countx; 

          Yin = county; 

          end 

        end 

*/ 

/* 

// test for quandrant 4 

   for (countx = 0; countx < 256; countx = countx + 1) 

        begin 

 for (county = -255; county < 1; county = county + 1) 

          begin 

   #20; 

   Xin = countx; 

          Yin = county; 

          end 

        end 

*/ 

/* 

// test  0 values should return 270 degrees    

        for (county = -255; county < 0; county = county + 1) 

          begin 

   #20; 

   Xin = 0; 

          Yin = county; 

          end 

#100;               

//  should return 90 degrees  

       for (county = 1; county < 256; county = county + 1) 

          begin 

   #20; 

   Xin = 0; 

          Yin = county; 

          end 

           

#100; 

// test  0 values should return 180 degrees    

       for (countx = -255; countx < 0; countx = countx + 1) 

          begin 

   #20; 

   Xin = countx; 
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          Yin = 0; 

          end 

#100;            

//  should return 00 degrees  

        for (countx = 1; countx < 256; countx = countx + 1) 

          begin 

   #20; 

   Xin = countx; 

          Yin = 0; 

          end 

*/        

 

 

   #400; 

   $write("Simulation has finished"); 

   $stop; 

end 

 

initial //generate clock 

begin 

 clk = 1'b0; 

 forever 

    #10 clk = ~clk; 

end 

 

 

CORDIC sin_cos (clk, Xin, Yin, Iout, Zout); 

 

 

endmodule 
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